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Abstract

Two tournaments T1 and T2 on the same vertex set X are said to
be switching equivalent if X has a subset Y such that T2 arises from
T1 by switching all arcs between Y and its complement X \ Y .

The main result of this paper is a characterisation of the abstract
finite groups which are full automorphism groups of switching classes
of tournaments: they are those whose Sylow 2-subgroups are cyclic
or dihedral. Moreover, if G is such a group, then there is a switching
class C, with Aut(C) ∼= G, such that every subgroup of G of odd order
is the full automorphism group of some tournament in C.

Unlike previous results of this type, we do not give an explicit con-
struction, but only an existence proof. The proof follows as a special
case of a result on the full automorphism group of random G-invariant
digraphs selected from a certain class of probability distributions.

We also show that a permutation group G, acting on a set X, is
contained in the automorphism group of some switching class of tour-
naments with vertex set X if and only if the Sylow 2-subgroups of
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G are cyclic or dihedral and act semiregularly on X. Applying this
result to individual permutations leads to an enumeration of switch-
ing classes, of switching classes admitting odd permutations, and of
tournaments in a switching class.

We conclude by remarking that both the class of switching classes
of finite tournaments, and the class of “local orders” (that is, tour-
naments switching-equivalent to linear orders), give rise to countably
infinite structures with interesting automorphism groups (by a theo-
rem of Fräıssé).

MR Subject Numbers: primary: 20B25; secondary: 05C25, 05C20, 05C30,
05E99

Dedicated to the memory of Paul Erdős

1 Introduction

The concept of switching of graphs (sometimes referred to as Seidel equiv-
alence) was first defined by Seidel [26]. It is an equivalence relation under
which the labelled graphs on a set of n vertices are partitioned into equiva-
lence classes of size 2n−1. Formulae for the numbers of isomorphism types of
switching classes, and of graphs in a switching class, were found by Mallows
and Sloane [25] and Goethals (personal communication), and are reported
in [8]. It is also noted in [8] that every abstract group is the automorphism
group of some switching class.

The purpose of this paper is to investigate a similarly-defined operation
of switching of tournaments, to characterise the automorphism groups of
switching classes, and to perform enumerations similar to those just men-
tioned for graphs.

The operation of switching a graph on the vertex set X with respect to
a subset Y of X consists of complementing the adjacency relation between
Y and the complementary set X \ Y (that is, y ∈ Y and z ∈ X \ Y will be
adjacent after switching precisely if they were not adjacent before switching),
and leaving all other edges and non-edges unaltered.

Analogously, the operation of switching a tournament on the vertex set
X with respect to a subset Y of X consists of reversing all the arcs between
Y and the complementary set X \ Y , leaving all other arcs unaltered.
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Observe that in both contexts, switching with respect to Y and to X \Y
are the same operation. In each case, the switching operations form a group
of order 2n−1, where n = |X|. Switching equivalence partitions the set of
graphs and the set of tournaments on the vertex set X into equivalence
classes of size 2n−1, called switching classes (of graphs and of tournaments,
respectively).

Henceforth we shall discuss the case of tournaments only, except where
expressly stated otherwise.

A permutation g of X is said to be an automorphism of the switching
class C if it permutes among themselves the members of C. (Note that here
g is an element of the symmetric group Sym(X), and is to be distinguished
from the induced permutation of C.) Clearly g is an automorphism of C if
and only if it maps one member of C into C. In particular, the automorphism
group of any tournament in C is a subgroup of the automorphism group of C.
However, the containment may be proper. For example, the automorphism
group of any tournament has odd order, but switching classes can admit
automorphisms of even order.

In fact, the main result of this paper, proven in Sections 5 and 6, asserts
that a finite abstract group is the automorphism group of some switching
class of tournaments if and only if its Sylow 2-subgroups are cyclic or dihedral
(Theorem 5.2).

The proof involves, in Section 6, a non-constructive (probabilistic) tech-
nique which is of greater generality than the particular result that we deduce
from it. We show that if G is a semiregular permutation group with a suffi-
ciently large number of orbits and f is a random G-invariant digraph chosen
from a rather general class of probability distributions then with large prob-
ability, Aut(f) = G.

It is a simple corollary that, if G has cyclic or dihedral Sylow 2-subgroups,
then there is a switching class C, with Aut(C) ∼= G, having the property
that every subgroup of G of odd order is the full automorphism group of a
tournament in C (Cor. 6.10).

We also show that a finite permutation group leaves some switching class
invariant if and only if its Sylow 2-subgroups are cyclic or dihedral and act
semiregularly (Theorem 5.1).

The enumeration results are given in Section 3, where we count the tour-
naments in a switching class whose automorphism group is given, and in
Section 7, where we count switching classes. The result in Section 3 gener-
alises Brouwer’s enumeration of local orders [6]. We have not been able to
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enumerate switching classes whose automorphism groups have even order in
general, but the number of such classes is found in the case when n is not
divisible by 4.

A consequence of the above enumerations is the existence of (k − 1)-
transitive infinite permutation groups with exactly two orbits on k-sets and
two on (k + 1)-sets for k = 3 and k = 4; these are relevant to the problem
considered in [9] (see Section 8).

Archaeology. Most of the results of this paper were proved in 1981-82.
The manuscript was subsequently lost as both authors moved. As a result of
a fortunate archaeological discovery, the paper came to light again in 1993 at
which time it was transfered to electronic media. Further progress was made
at a meeting hosted by the CRM, Montréal in September 1996. Finishing
touches were put on the paper in 1999. The main result, Theorem 5.2, has
been cited as “Theorem 4.4(b)” in [3, p. 1499].

The most poignant moment of the story was that Saturday morning in
Montreal when, while working on what seemed to be the final version of this
paper, we learned from an e-mail message of the death of Paul Erdős. For a
long while, we just stared at the screen in disbelief. Occasionally, we still do.

2 Equivalent objects: Switching classes, ori-

ented two-graphs and S-digraphs

In this section we describe two objects “equivalent” to switching classes of
tournaments, which we will need later.

We can regard a tournament as an antisymmetric function f from ordered
pairs of distinct vertices to {±1} (with f(x, y) = +1 if and only if there is
an arc from x to y). Switching with respect to {x} corresponds to changing
the sign of f whenever x is one of the arguments; and switching with respect
to an arbitrary subset is performed by switching with respect to its singleton
subsets successively. Given a tournament f , define a function g on ordered
triples of distinct elements by the rule

g(x, y, z) = f(x, y)f(y, z)f(z, x).

Then g is alternating (in the sense that interchanging two arguments changes
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the sign) and satisfies the “cocycle” condition

g(x, y, z)g(y, x, w)g(z, y, w)g(x, z, w) = +1.

We call such a function an oriented two-graph. Conversely, any oriented two-
graph arises from a tournament in this way. Switching the tournament does
not change the oriented two-graph, and in fact two tournaments yield the
same oriented two-graph if and only if they are equivalent under switching.
Thus there is a natural bijection between switching classes of tournaments
and oriented two-graphs; corresponding objects have the same automorphism
group.

A double cover of a set X is a set X with a surjective map p : X → X
with the property that |p−1(x)| = 2 for all x ∈ X. An S-digraph D on X is
a digraph with the properties

(a) for all x ∈ X, the induced digraph on p−1(x) has no arcs;

(b) for all x, y ∈ X with x 6= y, the induced digraph on p−1({x, y}) is a
directed 4-cycle.

It follows that, if a, b ∈ X, then a and b are joined by an arc if and only
if p(a) 6= p(b); and, if p(a) = p(a′) and b is another vertex, then the arcs on
{a, b} and {a′, b} are oppositely directed at b.

Let D be an S-digraph on X. If the set X0 contains one vertex from each
of the sets p−1(x) (x ∈ X), then p induces a bijection from X0 to X, and the
induced digraph on X0 is mapped to a tournament on X. Different choices
of X0 give rise to switching-equivalent tournaments, and every tournament
in the switching class is realised in this way. Conversely, to each switching
class, there corresponds a unique S-digraph.

The S-digraph D has an automorphism z which interchanges the two
points of p−1(x) for all x ∈ X. Any automorphism of a switching class lifts
to two automorphisms of the S-digraph, differing by a factor z. Thus, to a
group G ≤ Aut(C) of automorphisms of the switching class C corresponds a
group G ≤ Aut(D) of automorphisms of the S-digraph D, with 〈z〉�G and
G/〈z〉 ∼= G. (Thus G is an extension of the cyclic group of order 2 by G.)

We claim that z is the only involution (element of order 2) in Aut(D).
Indeed, let t be any involution in Aut(D). If t interchanges vertices a and

b, then p(a) = p(b), since otherwise a directed arc would join a and b (by
the definition of an S-digraph). Moreover, t cannot fix any further vertex c,
since the arcs on {a, c} and {b, c} are oppositely directed.
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It follows that z is in the center of Aut(D) and the pairs {a, za} (a ∈
X) form a system of imprimitivity for Aut(D). This in turn implies that
every automorphism of D induces and automorphism of C and therefore
Aut(D)/〈z〉 = Aut(C).

We summarize our main conclusions.

Proposition 2.1 The automorphism group of the S-digraph D correspond-
ing to the switching class C contains a unique involution z and Aut(D)/〈z〉 =
Aut(C). Consequently, any group G ≤ Aut(C) acting on the switching class
C is a quotient G = G/〈z〉 where z is the unique involution in the group
G ≤ Aut(D).

This extension of Aut(C) and its subgroups is crucial for our characteri-
sation of the automorphism groups of switching classes in Sections 5 and 6.

3 Counting tournaments in a switching class

In this section we give a formula for the number of non-isomorphic tour-
naments in a switching class, in terms of the automorphism group of the
class. A particular case is the enumeration of locally transitive tournaments,
established using different methods by A. Brouwer [6].

Lemma 3.1 An automorphism of a switching class C of tournaments fixes
some tournament in C if and only if it has odd order.

Proof Clearly an automorphism of a tournament has odd order. Conversely,
let g be an automorphism of odd order of a switching class on n points. The
group T of switchings, of order 2n−1, acts regularly on the switching class, and
is normalised by g. By a simple special case of the Schur–Zassenhaus theorem
([21], p. 224), 〈g〉 is conjugate (in T 〈g〉) to the stabiliser of a tournament;
that is, g fixes a tournament. 2

Theorem 3.2 Let G be the automorphism group of a switching class C of
tournaments. Then the number of tournaments in C, up to isomorphism, is

1

|G|
∑
g∈G
|g| odd

2orb(g)−1,

where |g| is the order, and orb(g) the number of cycles, of g.
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Proof If |g| is even, then g fixes no tournament; if |g| is odd, then g fixes
one, and all the fixed tournaments are obtained by switching this one with
respect to fixed partitions, that is, with respect to fixed subsets, since g
cannot interchange a subset with its complement. Now the Orbit-Counting
Lemma (the mis-attributed “Burnside’s Lemma”) gives the result. 2

There is no “trivial” switching class of tournaments, invariant under the
symmetric group, if |X| > 2. The simplest switching class is one whose cor-
responding oriented two-graph is a circular order (that is, can be represented
as a set of points on a circle so that g(x, y, z) = +1 if and only if the points
x, y, z are in anticlockwise order).

A local order (see [9]) is defined to be a tournament containing no 4-
vertex sub-tournament which consists of a vertex dominating or dominated
by a 3-cycle. Local orders also appear in the literature under the names
locally transitive tournaments [23] or vortex-free tournaments [22].

Lemma 3.3 The following are equivalent for a switching class C of tourna-
ments:

(a) C contains a linear order;

(b) C contains a local order;

(c) C consists entirely of local orders;

(d) the corresponding oriented two-graph is a circular order.

Proof An oriented two-graph is a circular order if and only if its restriction
to every 4-set is a circular order. Also, a tournament is a local order if and
only if its restriction to every 4-set is a local order. So the equivalence of
(b)–(d) can be shown by checking the result for tournaments on 4 vertices.

Clearly (a) implies (b). The converse is proved by induction, being trivial
for switching classes on fewer than 4 vertices. So let T be a local order on n
vertices, assuming the result for fewer than n vertices. Let v be any vertex.
By the induction hypothesis, we can switch so that T \ {v} is a linear order,
say v1 < · · · < vn−1, with the convention that vi < vj if there is an arc from
vi to vj . Since T is a local order, there cannot exist i < j < k such that
(v, vi), (vj , v) and (v, vk) are arcs, or the converses of these are arcs. Hence,
for some i, we either have arcs (vj , v) for j ≤ i and (v, vk) for k > i, or the
converses of these. In the first case, we have a linear order, where v comes
between vi and vi+1. In the second case, we obtain a linear order by switching
with respect to {v1, . . . , vi}. 2
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It follows from the equivalence of (a) and (d) that there is a unique circular
order on n points (up to isomorphism). Its automorphism group is the cyclic
group of order n, acting regularly. This group contains φ(n/d) elements of
order n/d for each d dividing n, such an element having d cycles. Hence we
obtain:

Theorem 3.4 The number of local orders on n points, up to isomorphism,
is

1

n

∑
d|n

n/d odd

2d−1φ(n/d). 2

This was first proved by Brouwer [6] by means of a correspondence with
certain shift register sequences.

Remark 3.5 The number of non-isomorphic tournaments in a switching
class on n vertices is at least (3/2n)(2/

√
3)n. For if G is the automorphism

group of C, then the stabiliser Gx fixes the unique tournament in C for
which x is a source, and so |Gx| is odd. Thus |Gx| ≤ 3(n−2)/2 (Dixon [16]),
and |G| ≤ (n/3)3n/2. Since |C| = 2n−1, G has at least (3/2n)(2/

√
3)n orbits

in C. (Note that no such exponential bound holds for graphs: the switching
class of the null graph contains only bn/2c+ 1 non-isomorphic graphs.)

Remark 3.6 Almost all switching classes of tournaments on n points have
all 2n−1 members pairwise non-isomorphic. This is equivalent to Corollary 6.5
which states that almost all switching classes have trivial automorphism
groups.

4 Groups with a unique involution

Our main results, Theorems 5.2 and 5.1, characterize the automorphism
groups of switching classes. Proposition 2.1 indicates the connection of these
groups with groups containing a unique involution. Therefore the following
result is a crucial ingredient in both proofs.

Theorem 4.1 For an abstract finite group G, the following are equivalent:

(a) G has cyclic or dihedral Sylow 2-subgroups;
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(b) there exists a group G containing a unique involution z such that G/〈z〉
is isomorphic to G.

Moreover, the group G is uniquely determined by G.

This result is known to some group theorists, but we are not aware of a
proof in the literature. We are indebted to G. Glauberman for the simple
argument given here.

Proof Suppose that (b) holds. Let S be a Sylow 2-subgroup of G, so that
S = S/〈z〉 is a Sylow 2-subgroup of G. Now S contains a unique involution,
so it is cyclic or generalised quaternion (Burnside [7], p. 132), and S is cyclic
or dihedral.

The reverse argument uses some facts about cohomology of groups, for
which we refer to Cartan and Eilenberg [13]. Extensions of Z2 by a group
G are described by elements of the cohomology group H2(G,Z2). If S is a
cyclic or dihedral 2-group, then there is an extension S of Z2 by S containing
a unique involution, viz. a cyclic or generalised quaternion group. Not only
is such an extension unique up to isomorphism, but it is readily checked
that there is a unique cohomology class in H2(S,Z2) corresponding to an
extension with this property.

Let t be a cohomology class for a subgroup S of a group G. For any
g ∈ G, there is a corresponding class tg of the conjugate Sg. We call t stable
if the images of t and tg under the restriction maps resS,S∩Sg and resSg,S∩Sg
are equal for all g ∈ G. If S is a cyclic or dihedral 2-group, and t the class
defined in the previous paragraph, the uniqueness of t implies that it is stable
with respect to any supergroup G of S.

A formula of Cartan and Eilenberg ([13], p. 258) asserts that, if t is
stable, then resG,S corS,G t = |G : S|t, where corS,G denotes the corestriction
map. If S is a Sylow 2-subgroup of G, then |G : S| is odd, and 2t = 0,
since t ∈ H2(S,Z2). So the element t∗ = corS,G t of H2(G,Z2) satisfies
resG,S t

∗ = t. The extension G of Z2 by G corresponding to t∗ has a unique
element of order 2, since each of its Sylow 2-subgroups does. 2

Remark 4.2 The structure of groups satisfying the conditions of the theo-
rem is well known. Let S2(G) be the Sylow 2-subgroup of G and let O(G)
denote the largest normal subgroup of odd order in G. If S2(G) is cyclic then
G = S2(G) · O(G) (semidirect product, so G/O(G) = S2(G)) by Burnside’s
transfer theorem ([7], p. 155). The case when S2(G) is dihedral is settled by
the theorem of Gorenstein and Walter [20]:
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Let G be a group with dihedral Sylow 2-subgroups. Then G/O(G)
is isomorphic to S2(G) or to A7 or to a subgroup of PΓL(2, q)
which contains PSL(2, q) (for q odd).

It is possible to prove that (a) implies (b) in Theorem 4.1 using this structural
information in place of the cohomological argument, though the proof is much
longer.

Remark 4.3 An interesting class of groups with a unique involution, called
“binary polyhedral groups,” is discussed by Coxeter ([15], p. 82). These
groups are defined as the inverse images of the usual polyhedral groups
(groups of rotations of 3-dimensional polytopes) under the 2-to-1 homomor-
phism from the 2-dimensional unitary group over C to the 3-dimensional
orthogonal group over R. Coxeter notes that the binary polyhedral groups
have a unique involution, notes that they share this property with the groups
SL(2, q) (q odd) and with the direct product of any of these groups with a
group of odd order. He goes on to asking whether this is a complete list of
groups with a unique involution.

In a sense, the one-to-one correspondence given in Theorem 4.1 settles
this question. In particular, groups G for which O(G) is not a direct factor
in G = G/〈z〉 are not covered by Coxeter’s list.

It should be remarked, though, that the transition from G to G is not
always immediate. For instance, if G = PSL(2, 3) then G = SL(2, 3), as
expected, but if G = PGL(2, 3) then G is the binary octahedral group (of
order 48) which is not isomorphic to GL(2, 3) (also of order 48) even though
GL(2, 3) has a unique central involution z and GL(2, 3)/〈z〉 = PGL(2, 3).
(The trouble is, GL(2, 3) has non-central involutions as well, its Sylow 2-
subgroup is dihedral.)

5 Automorphism groups of switching classes

In this section we begin the proofs of the following two theorems, which
characterise automorphism groups of switching classes of tournaments, and
the permutation groups which can act on switching classes. We say that a
switching class C of tournaments on vertex set X admits the permutation
group G ≤ Sym(X) if G ≤ Aut(C).

Theorem 5.1 For a finite group G of permutations of a finite set X, the
following are equivalent:
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(a) there is a switching class of tournaments on X admitting G;

(b) G has cyclic or dihedral Sylow 2-subgroups which act semiregularly on
X.

Theorem 5.2 For an abstract finite group G, the following are equivalent:

(a) G is the full automorphism group of a switching class of tournaments;

(b) G has cyclic or dihedral Sylow 2-subgroups.

We first prove that, in each of Theorems 5.1 and 5.2, condition (a) im-
plies condition (b). Suppose that the group G acts on a switching class
C of tournaments on X. Let S be a Sylow 2-subgroup of G. Combining
Proposition 2.1 and Theorem 4.1 we see that S is cyclic or dihedral.

Next we examine the action of S on X. Let X be a double cover of X
carrying the S-digraph D corresponding to C. Let G be the extension of Z2

by G acting on D and inducing G on X, as in Proposition 2.1.
Let z denote the unique involution in G.
Let S be a Sylow 2-subgroup of G. Then any non-identity subgroup of

S contains z and hence fixes no point. Thus S acts semiregularly on X, and
so S = S/〈z〉 acts semiregularly on X.

The reverse implications in Theorems 5.1 and 5.2 use similar construc-
tions. We consider Theorem 5.1 first. Suppose that condition (b) holds.
By Theorem 4.1, there is a group G with unique involution z, such that
G/〈z〉 = G. We construct a permutation representation of G on a double
cover X of X. Take any orbit Y of G in X. For y ∈ Y , Gy has odd order,
and so Gy has twice odd order. It follows that Gy = 〈z〉 ×H, with H ∼= Gy.
So each Gy-coset in G is the union of two H-cosets, and the coset space of
H in G is a double cover of the coset space of Gy, that is, of Y . The union
of all such coset spaces is thus a double cover X of X on which G operates.
Since z 6∈ H, the element z interchanges the two points of X covering each
point of X.

Furthermore, if t ∈ G has 2-power order and interchanges a pair of points
a, b ∈ X, then t = z and p(a) = p(b). For t2 fixes a and b, and so the image
of t2 in G is a 2-element with a fixed point, and hence trivial; thus t2 = 1
or z. The latter is impossible since z is fixed-point-free on X. So t2 = 1,
whence t = z and p(a) = p(b).
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It follows that all orbits of G on ordered pairs (a, b) of points of X with
p(a) 6= p(b) are antisymmetric. Moreover, if p(a) = p(a′), then (a, b) and
(a′, b) lie in different orbits. It is thus possible to select one orbit from each
converse pair in such a way that, if p(a) = p(a′) and (a, b) is in a chosen orbit,
then (b, a′) (rather than (a′, b)) is in a chosen orbit. Let D be the digraph in
which an arc goes from a to b whenever (a, b) lies in a chosen orbit. Then D
is a special digraph admitting G. As explained in Section 2, it follows that
G acts on a switching class of tournaments. This proves Theorem 5.1. 2

In the next section, we complete the proof of Theorem 5.2 by showing
that, if G acts semiregularly with a large number of orbits, then with high
probability, a random S-digraph constructed by the above procedure has full
automorphism group precisely G.

6 Automorphism groups of random

G-invariant digraphs

We shall regard a digraph as a function f from ordered pairs of distinct
vertices to {±1} with f(x, y) = +1 if there is an arc from x to y. A graph
corresponds to a symmetric function. (Note that for S-digraphs, f is neither
symmetric nor antisymmetric.)

If the function f is a random variable, we obtain the notion of a random
digraph. We allow f to have an arbitrary, (n2 − n)-dimensional ±1 distri-
bution. In particular, the projections f(x, y) and f(x′, y′) do not have to be
independent even if {x, y} ∩ {x′, y′} = ∅.

We shall need a fairly general lemma which is useful in various situations
in which our digraphs are picked at random from a collection of digraphs
admitting a given permutation group with small orbits.

Our model is the following. The vertex set X will be partitioned into
(non-empty) classes X1, . . . , Xm. A set of pairs {(x1, y1), . . . , (xs, ys)} will be
called (X1, . . . , Xm)-independent, if

(a) no {xi, yi} is a subset of any Xk;

(b) no {xi, yi, xj , yj} is a subset of any Xk ∪Xl for any i 6= j, 1 ≤ i, j ≤ s,
1 ≤ k, l ≤ m.

Clearly, s ≤
(
m
2

)
in this case. We shall say that the random digraph f is

uniformly distributed between (X1, . . . , Xm) if
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(A) Prob(f(x, y) = 1) = 1
2

whenever x and y belong to different classes;

(B) for any (X1, . . . , Xm)-independent set {(x1, y1), . . . , (xs, ys)}, the ran-
dom variables f(xi, yi) (for i = 1, . . . , s) are totally independent.

Lemma 6.1 Let the n-element set X be partitioned as X = X1 ∪ . . . ∪Xm

into pairwise disjoint classes of bounded size: |Xi| ≤ t for some fixed t. Let
f be a random digraph, uniformly distributed between (X1, . . . , Xm). Then
the probability of the event that all but at most m1/2+ε of the Xi are invariant
under Aut(f) is greater than 1−ε for any positive ε provided that n > n0(t, ε).

Proof We say that a permutation α ∈ Sym(X) destroys a set A ⊆ X if A
is not invariant under α. Let r(α) denote the number of classes destroyed by
α.

For some α ∈ Sym(X), let x1, . . . , xk be a maximal subset of X such that
all the 2k elements x1, . . . , xk, αx1, . . . , αxk belong to different classes.

We claim that k ≥ r/(2t+ 1), where r = r(α). Indeed, let X1, . . . , Xr be
the classes destroyed by α. For each i ≤ r, pick a point zi ∈ Xi such that
αzi 6∈ Xi. Now define a graph on the vertex set {1, . . . , r} by joining i and
j if the pair {zi, αzi} is in conflict with the pair {zj , αzj} (conflict meaning
that some class X` meets both pairs). Since by assumption all Xi have size
≤ t, the vertices of the graph constructed have degree ≤ 2t. Therefore the
chromatic number of the graph is at most 2t+1, hence it has an independent
set of size ≥ r/(2t+ 1), establishing the Claim.

Now the set of k(k − 1) pairs {(xi, xj), (αxi, αxj) : 1 ≤ i < j ≤ k} is
(X1, . . . , Xm)-independent and therefore the random variables f(xi, xj) and
f(αxi, αxj) are totally independent. Hence

Prob(α ∈ Aut(f)) ≤ Prob(f(xi, xj) = f(αxi, αxj) for 1 ≤ i < j ≤ k)

= 2−k(k−1)/2.

Consequently, the probability that there exists as automorphism of f
which destroys at least r classes is less than n!2−k(k−1)/2, where k = r/(2t+1).
Let us set r = m1/2+ε/2. Then clearly n!2−k(k−1)/2 < ε for n > n0(t, ε). Hav-
ing thus estimated the maximum number of classes destroyed by individual
automorphisms of f , we only need the following observation to establish the
stated bound on the total number of classes destroyed by Aut(f).
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Proposition 6.2 Let G be a finite group acting on a set X. Let A1, . . . , As
be subsets of X which are not invariant under G. Then there exists α ∈ G
which destroys at least half the classes Ai.

Proof We use the simple trick sometimes known as the “first moment
method” (see [18], p. 5). Let α be a random member of G (each element of
G having the same chance to be α). For each i, the probability that Ai is
invariant under α is at most 1/2 (since the setwise stabiliser in G of Ai is a
proper subgroup). Hence the expected number of those Ai destroyed by α is
at least s/2. 2

Now, an application of Proposition 6.2 with those Xi not invariant under
G = Aut(f) playing the roles ofA1, . . . , As completes the proof of Lemma 6.1.
2

Next, we turn our attention to random digraphs invariant under a per-
mutation group action.

Let G be a group acting on X, the vertex set of the random digraph f . We
shall say that the random variable f is G-invariant if Prob(G ≤ Aut(f)) = 1;
in other words, Prob(f(x, y) = f(gx, gy)) = 1 for all g ∈ G, x, y ∈ X.

We shall need the following stronger version of condition (B):

(B′) If (i1, j1), . . . , (is, js) are distinct pairs of numbers from {1, . . . ,m} such
that (ih, jh) 6= (jk, ik) (k, h = 1, . . . , s), then the projections f |Xih×Xjh

(h = 1, . . . , s) are totally independent.

We shall say that f is strongly uniformly distributed between (X1, . . . , Xm)
if (A) and (B′) hold.

Theorem 6.3 Let G be a group of order t acting semiregularly on the set
X, with orbits X1, . . . , Xm. Let f be a random G-invariant digraph on X,
strongly uniformly distributed between (X1, . . . , Xm) and satisfying the addi-
tional condition (C) below. Then Prob(Aut(f) = G) > 1− ε for any positive
ε provided that |X| = n > n0(t, ε).

(C) For any i 6= j and any x, x′ ∈ Xi and y, y′ ∈ Xj ,

Prob(f(x, y) = f(x′, y′)) ≤ 1/2.
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Proof By Lemma 6.1, with probability greater than 1− ε, most orbits of G
are invariant under Aut(f)

Let us first consider permutations α ∈ Sym(X) under which all the Xi

are invariant.
We select representatives xi ∈ Xi for i = 1, . . . ,m. Let Ek denote the

event that there exists α ∈ Aut(X) \ G which preserves the classes Xi and
fixes precisely k of x1, . . . , xm. The probability that, for some i > k, the
vertex xi “has a place to go” while x1, . . . , xk are fixed is at most (t− 1)2−k,
since the “place” must be some y ∈ Xi with y 6= xi, and

Prob(f(xi, xj) = f(y, xj) for all j = 1, . . . , k) ≤ 2−k.

(We used (C) (employing semiregularity) and (B′) here.) Using (B′) again,
we find that the probability that xk+1, . . . , xm all have places to go while
x1, . . . , xk are fixed is not greater than ((t− 1)2−k)m−k. Finally,

Prob(Ek) ≤
(
m

k

)
((t− 1)2−k)m−k. (1)

Our next observation is that any α ∈ Sym(X) which preserves the Xi

agrees with some g ∈ G in at least m/t of the xi. (Again, we use the “first
moment method”: pick a random g ∈ G; then the expected number of those
xi such that αxi = gxi is exactly m/t.) Now g−1α fixes k ≥ m/t of the xi.
Hence the probability of the event A that there exists an α ∈ Aut(f) \ G
which preserves the Xi is

Prob(A) ≤
m∑

k=k0

Prob(Ek), (2)

where k0 = dm/te.
As above, the probability that any particular member of X1 has a place

to go while x1, . . . , xm are fixed is less than (t− 1)2−m+1. Consequently,

Prob(Em) ≤ n(t− 1)2−m+1. (3)

Combining (1), (2) and (3), we obtain for large enough n (meaning n >
2t2 log2 t, and therefore t < 2m/2t):

Prob(A) ≤
m∑

k=k0

Prob(Ek)
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≤ n(t− 1)2−m+1 +
m−1∑
k=k0

(
m

k

)
((t− 1)2−k)m−k

< 2nt2−m +
m−1∑
k=1

(
m

k

)
2−k(m−k)/2

< 2nt2−m + 2
m∑
k=1

(
m

k

)
2−km/4

= 2nt2−m + 2((1 + 2−m/4)m − 1)

< 3m2−m/4;

hence
Prob(A) < 3m2−m/4. (4)

Now we turn to those automorphisms of f which destroy some of the
orbits of G. The number of orbits destroyed is negligible, by Lemma 6.1:
it is less than m2/3, say, with probability greater than 1 − ε, provided that
n > n0(t, ε).

Set q = bm2/3c. Let us consider those α ∈ Sym(X) which preserve the
sets X1, . . . , Xm−q.

Restricting the above result to the subgraph induced by the set Y =
X1 ∪ . . . ∪ Xm−q, we find that the probability of the existence of such an
α ∈ Aut(f) whose restriction to Y is not a member of the restriction of G to
Y , is less than

3(m− q)2−(m−q)/4 < 2−m/5 (5)

(for large m).
Suppose now that α|Y = g|Y for some g ∈ G. Now g−1α|Y is the

identity. We estimate the probability that some x ∈ X \ Y can still move.
Let y ∈ X\Y , x 6= y, and let x1, . . . , xm−q be representatives ofX1, . . . , Xm−q,
respectively. We claim that

Prob(f(x, xj) = f(y, xj) for j = 1, . . . ,m− q) ≤ 2−m+q. (6)

If y belongs to the G-orbit of X then (6) follows from (C) (by semiregularity)
and (B′). If y does not belong to Gx then (6) simply follows from (A) and
(B) (and we have equality in this case).
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Consequently, the probability that there exists α ∈ Aut(f)\G preserving
X1, . . . , Xm−q is less than

2−m/5 +

(
qt

2

)
2−m+q < 2−m/6. (7)

Finally,

Prob(Aut(f) 6= G) = Prob(Aut(f) 6≤ G)

≤ Prob(Aut(f) destroys more than q orbits of G)

+

(
m

q

)
2−m/6

< ε+mq2−m/6

< 2ε

for n > n′0(t, ε). 2

Remark 6.4 Theorem 6.3 remains valid (with the same proof) if G acts reg-
ularly on all but o(m) orbits and arbitrarily on the remaining small fraction
of the set of orbits.

We are now ready to derive the reverse implication in Theorem 5.2 from
Theorems 4.1 and 6.3.

Let G be a finite group with cyclic or dihedral Sylow 2-subgroups. By
Theorem 4.1, there exists a group G containing a single involution z such that
G ∼= G/〈z〉. Let t = |G|. Let G act semiregularly with orbits X1, . . . , Xm on
a set X of size n = mt for some large number m. Let us define the double
cover p : X → X by contracting every orbit of 〈z〉. It is this map p with
respect to which we shall use the term “S-digraph” (cf. Section 2).

We are going to define random G-invariant S-digraphs on X with respect
to p. Being special, no arcs join any pair x, zx for x ∈ X, and for all distinct
x, y ∈ X, the subgraph induced by {x, y, zx, zy} is an oriented 4-cycle. From
each G-orbit of these 4-tuples we select one and decide by independent flips
of a fair coin which way the 4-cycle should be oriented. We transfer the
orientation to the other 4-cycles of this form by the action of G.

Clearly the resulting random digraph f satisfies (A), (B′) and (C). There-
fore, by Theorem 6.3, we have Prob(Aut(f) = G) > 0 for m > m0(t). This
proves the existence of an S-digraph with automorphism group G, and hence
the existence of a switching class of tournaments with automorphism group
G (cf. Section 2). 2
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Applying this argument to the trivial group (|G| = 1) we obtain the
following corollary. An object is asymmetric if its automorphism group is
trivial.

Corollary 6.5 Almost all switching classes of tournaments are asymmetric.
The same holds for switching classes of graphs. 2

Corollary 6.5 strengthens the well-known results that almost all labelled
graphs (tournaments) are asymmetric ([17]).

Remark 6.6 Similarly, one can derive from Theorem 6.3 that the full au-
tomorphism group of a G-invariant random graph, digraph or tournament
almost always coincides with G, provided that G acts semiregularly with a
large number of orbits.

In particular, these statements prove the existence of graphs, digraphs,
tournaments with prescribed abstract groups G as their full automorphism
groups (with |G| odd in the case of tournaments). The existence of such
objects can, however, be proved quite easily by direct constructions (cf. e.g.
[24], Chapter 12, Problems 5, 6, 7). Moreover, direct constructions yield such
objects with only one or two G-orbits. (These results are discussed in the
surveys [2] and [5].)

The above proof of Theorem 5.2 appears to be the first case where the
existence of an object with prescribed abstract group of automorphisms has
been demonstrated without actually constructing such an object. We were
not able to find any elegant construction. A problem of interest in this
direction is the following.

Problem 6.7 Given a group G with cyclic or dihedral Sylow 2-subgroups,
does there exist a switching class of tournaments whose full automorphism
group is isomorphic to G, and G acts with a bounded number of orbits on
the set of vertices? (The bound should be an absolute constant.)

The problem of restricting the automorphism groups of a G-invariant
random graph, where G is semiregular with a small number of orbits, seems
quite difficult (cf. [4]).

Remark 6.8 By Remark 6.4 it follows that any permutation group, whose
Sylow 2-subgroups are cyclic or dihedral and act semiregularly, actually oc-
curs as a section of the full automorphism group of a switching class of
tournaments (that is, the restriction to an invariant subset).
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The following observation leads to a further important corollary.

Proposition 6.9 If G is a semiregular permutation group with two or more
orbits, and if G = Aut(f) for some S-digraph f , then every subgroup H of
G = G/〈z〉 of odd order occurs as the automorphism group of some member
of the corresponding switching class. (Here z denotes the unique involution
in G.)

Proof Let H be the preimage of H in G, so z ∈ H and H/〈z〉 = H. Let K
be the (unique) index-2 subgroup of H; so H = K × 〈z〉, and K ∼= H.

Within each G-orbit, select a “root.” Making g ∈ G correspond to the
g-image of the root establishes a bijection between G and the orbit.

Within one G-orbit, select one of each pair of K-orbits interchanged by
z; make a corresponding selection (under the bijections discussed) in every
G-orbit except one, where one choice is made differently. The required tour-
nament is induced on the chosen set of vertices. 2

Hence we have the following corollary:

Corollary 6.10 Given a finite group G with cyclic or dihedral Sylow 2-
subgroups, there exists a switching class of tournaments with G as its full
automorphism group, with the property that every subgroup of G with odd
order occurs as the full automorphism group of some tournament in this
switching class. 2

This answers a question of the second author [10, p. 118].

7 Counting switching classes

The following specialisation of Theorem 5.1 is crucial to the enumeration of
switching classes of tournaments. Call a permutation level if the powers of 2
dividing its cycle lengths are all equal. Note that a permutation on an odd
number of points is level if and only if it has odd order. Let Ln be the set of
level permutations in the symmetric group Sn.

Lemma 7.1 A permutation leaves invariant some switching class of tour-
naments if and only if it is level.

Proof This is immediate from Theorem 5.1 applied to the cyclic group
generated by the permutation. 2
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Now let A be the group of order 2n(n−1)/2 whose elements are the opera-
tions of reversing prescribed sets of arcs in tournaments on X, where |X| = n.
Then A permutes regularly the (labelled) tournaments on X; and the group
T of switchings is a subgroup of A whose orbits are the switching classes. So
B = A/T permutes regularly the switching classes. Thus, if a permutation g
fixes a switching class, then the number of switching classes it fixes is equal
to the number of elements of B that it fixes. This number is easily computed,
and in any case is known from the enumeration of switching classes of graphs
by Mallows and Sloane [25]: it is

2orb2(g)−orb(g)+δ(g),

where orb2(g) is the number of orbits of 〈g〉 on unordered pairs, and δ(g) is
0 if all cycles of g have even length, or 1 otherwise. (So, if g is level, then
δ(g) = 1 or 0 according as |g| is odd or even.) Thus we obtain:

Theorem 7.2 The number of switching classes of tournaments on n ver-
tices, up to isomorphism, is

1

n!

∑
g∈Ln

2orb2(g)−orb(g)+δ(g). 2

For small values of n, we obtain the following.

n 2 3 4 5 6 7 8
switching classes 1 1 2 2 6 12 79

Remark 7.3 The number of switching classes of tournaments is smaller than
the number of switching classes of graphs if n ≥ 3. For the formula is a sum
of some of the terms appearing in the sum found by Mallows and Sloane,
viz. those for which the permutation is level; and if n ≥ 3, then not every
permutation is level.

Remark 7.4 A striking difference between the enumeration problems for
graphs and tournaments is that every automorphism of a switching class
of graphs fixes some graph in that class [25]. It would be interesting to
enumerate the switching classes of tournaments for which this fails, that is,
those whose automorphism groups have even order. We cannot do this, but
the following results give the answer in some cases.
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Lemma 7.5 Let G be a group acting on a set X, and H a normal subgroup
of G of prime index. Then the number of orbits of G on X consisting of
points whose stabilisers contain elements of G \H is

1

|G \H|
∑
g∈G\H

π(g),

where π(g) is the number of fixed points of g in X.

Proof The standard proof of the Orbit-Counting Lemma shows that∑
g∈G

π(g) =
∑
x∈X
|Gx|,

and that the right-hand expression is |G| times the number of orbits. Let
Y be the set {y : (G \ H) ∩ Gy 6= ∅}. Clearly

∑
g∈G\H π(g) is equal to∑

y∈Y |(G\H)∩Gy|, which in turn is ((p−1)/p)
∑

y∈Y |Gy|, where p = |G : H|,
since |Gy : Gy ∩H| = p. Thus the sum is

p− 1

p
|G|# orb(G, Y ) = |G \H|# orb(G, Y ). 2

Proposition 7.6 The number of switching classes of tournaments on n ver-
tices admitting odd permutations is

2

n!

∑
g∈Ln∩(Sn\An)

2orb2(g)−orb(g).

Proof Observe that if g 6∈ An then g has even order, so δ(g) = 0 for all
g ∈ Ln ∩ (Sn \An). Apply Lemma 7.5. 2

Corollary 7.7 If n ≡ 2 (mod 4), then the number of switching classes of
tournaments on n vertices whose automorphism groups have even order is

2

n!

∑
g∈Ln
|g| even

2orb2(g)−orb(g).

Proof If n ≡ 2 (mod 4), a level permutation is odd if and only if its order
is even. 2
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Remark 7.8 This formula is trivially valid also for n odd, and holds as well
if n = 4.

Corollary 7.9 If n is a power of 2, there are 2n/2/n cyclic switching classes
of tournaments on n vertices.

Proof If n is a power of 2, the only odd level permutations are n-cycles;
there are (n − 1)! of these, and if g is one of them, then orb2(g) = n/2,
orb(g) = 1. 2

There is an alternative direct proof. An n-cycle g fixes 2n/2−1 switching
classes. If C is one of these, then 〈g〉 is a Sylow 2-subgroup of G = Aut(C).
By Burnside’s transfer theorem, G has a normal 2-complement N ; and N =
1, since N has odd order and acts 1

2
-transitively on a set of 2-power size. So

G = 〈g〉. Thus, if two g-invariant switching classes are isomorphic, then the
isomorphism between them normalises 〈g〉. Since N(〈g〉)/〈g〉 has order n/2,
the number of isomorphism classes is 2n/2−1/(n/2).

Remark 7.10 The number in Corollary 7.9 is equal to the number of local
orders on n/2 points.

8 Application: homogeneous models and in-

finite permutation groups

We conclude the paper with the descriptions of two infinite permutation
groups relevant to a problem discussed in [9]. The discussion here will be
brief; more detail on the background can be found in [11].

A class C of structures is said to be hereditary if it is closed under tak-
ing induced substructures on subsets. It has the amalgamation property if,
whenever fi : A → Bi are embeddings of structures in C for i = 1, 2, then
there exist embeddings gi : Bi → C, for some structure C in C, such that
f1g1 = f2g2.

It follows from a model-theoretic construction due to Fräıssé [19] that, if
the finite models of a first-order theory in a relational language are heredi-
tary and have the amalgamation property, then there is a unique countable
homogeneous model containing all finite models as substructures. (Here we
say that a structure is homogeneous if any isomorphism between finite in-
duced substructures can be extended to an automorphism of the structure.)
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In this situation, if G denotes the automorphism group of this model, then
the number nk(G) of G-orbits on k-sets is equal to the number of k-element
models (up to isomorphism).

It is easily verified that both local orders and oriented two-graphs have
the hereditary and amalgamation properties. The number of local orders
on 2, 3, 4 points are 1, 2, 2 respectively. So, if G1 is the automorphism
group of the homogeneous local order, then G1 is 2-homogeneous and satisfies
n3(G1) = n4(G1) = 2. Similarly, if G2 is the automorphism group of the
homogeneous oriented two-graph, then G2 is 3-homogeneous and satisfies
n4(G2) = n5(G2) = 2. These are two of a very short list of known primitive
infinite permutation groups G with nk(G) = nk+1(G) > 1 for some k (see [9],
IV).

Lachlan [23] determined all countable homogeneous tournaments (see also
Cherlin [14]). There are just three of them: the transitive tournament Q, the
homogeneous local order considered above, and the homogeneous tournament
T containing all finite tournaments. The homogeneous oriented two-graph
mentioned above corresponds to the switching class of T .

The orbit-counting sequences associated with these two examples appear
as numbers A000016 and A049313 in the On-Line Encyclopedia of Integer
Sequences [27]. The second author is currently compiling a list of sequences
which count group orbits on k-tupes in this way [12].
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