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Abstract

A construction is given of 2
9(d + 1)2 equiangular lines in Euclidean d-space,

when d = 3 · 22t−1 − 1 with t any positive integer. This compares with the well
known “absolute” upper bound of 1

2d(d+ 1) lines in any equiangular set; it is the
first known constructive lower bound of order d2 .

For background and terminology we refer to Seidel [3]. The standard method for
obtaining a system of equiangular lines in Euclidean space is as follows. Let G be a
graph, with Seidel adjacency matrix S, i.e. Sxy = −1 if vertices x and y are adjacent,
Sxy = 1 if x and y are distinct and non-adjacent, Sxx = 0 for all x. Letting θ denote
the smallest eigenvalue of S, we see that M := I − 1

θ
S is positive semidefinite of rank

d = n−m where n is the number of vertices and m is the eigenvalue multiplicity of θ.
Hence M is representable as the Gram matrix of n unit vectors x1, ..., xn in real d-space,
with < xi, xj >= ±1

θ
whenever i and j are distinct. Thus the lines (1-dimensional

subspaces) spanned by these xi’s have constant pairwise angle arccos ( 1
θ
).

It is not hard to see that the above process is reversible, so that finding a large
equiangular set of lines in Euclidean space amounts to finding a graph whose Seidel
adjacency matrix has smallest eigenvalue of large multiplicity.

Theorem. For each d = 3 · 22t−1 − 1, with t any positive integer, there exists an
equiangular set of 2

9
(d+ 1)2 lines in Euclidean d-space.

In order to describe the graphs relevant to this construction, we need to recall some
terms and facts from the theory of quadratic forms over GF (2); a convenient reference is
[1], which contains everything we need here as well as some pointers to earlier literature.
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Let V be a vector space over GF (2). If Q : V → GF (2) is a quadratic form, then
its polarization B(x, y) := Q(x + y) + Q(x) + Q(y) is an alternating bilinear form.
Note that B can be non-singular only if V has even dimension; so we will assume that
dim(V ) = 2t for some positive integer t. If Q polarizes to a non-singular B, then Q
must be of one of two types χ(Q) = ±1, where Q has exactly 22t−1 + χ(Q)2t−1 zeroes.
Next, let {B1, B2, ..., Br} be a set of alternating bilinear forms on V ; if Bi +Bj is non-
singular for all i 6= j then the set is called non-singular. It is not hard to show that
a non-singular set has r ≤ 22t−1; when equality holds it is called a Kerdock set. Such
maximal non-singular sets do exist for all t.

We may now describe the graphs occurring in our construction of equiangular lines.
Let K be a Kerdock set of alternating forms on V , where dim(V ) = 2t as above. The
graph Gt will have as vertex-set all pairs (B,Q) where B belongs to K and Q polarizes
to B. Two vertices (B,Q) and (B′, Q′) are declared adjacent precisely when B 6= B′

and χ(Q + Q′) = −1. Note that Gt is one of the two non-trivial relations in what is
called the Cameron-Seidel 3-class association scheme in [1]. The eigenvalues of the Seidel
adjacency matrix S(Gt) are as follows:

θ1 = 23t−1 + 22t − 2t − 1; multiplicity one.

θ2 = 23t−1 − 2t − 1; multiplicity 2q − 1 where q := 22t−1.

θ3 = 22t − 2t − 1; multiplicity q − 1.

θ4 = −2t − 1; multiplicity (q − 1)(2q − 1).

The foregoing spectral information can be derived from the (dual) eigenmatrix Q on
page 326 of [2], by setting n = 22t, r = 22t−1, a = 2t+1, θ = 2t−1 and τ = −2t−1 in that
paper; the adjacency eigenvalues of Gt are then given by the fourth column of Q and
the corresponding multiplicities by the first row of the P -matrix. Also please note that
the Seidel matrix S and ordinary adjacency matrix A are related by S = J − I − 2A.

We now have the following situation. The eigenvalue θ = θ4 is the smallest eigenvalue
of S(Gt) and it has very large multiplicity. Indeed the rank of M = I− 1

θ
S is d = 3q− 1

and the graph has 2q2 = 2
9
(d+1)2 vertices. From the standard procedure sketched earlier,

we thus obtain an equiangular set of 2
9
(d + 1)2 lines in Euclidean d-space, whenever

d = 3q − 1 = 3 · 22t−1 − 1 for some positive integer t. This completes the presentation
and verification of our construction, or in other words, the proof of our theorem.

The graphs Gt have already been known for over twenty-five years. It is perhaps
surprising that their relevance to equiangular lines was not noticed before. A likely
reason is that, generally speaking, the best constructions seem to come from regular
two-graphs where the Seidel adjacency matrix has just two distinct eigenvalues; for
example the absolute upper bound of 1

2
d(d+ 1) can only be achieved by a regular two-

graph. But so far (cf. [3], p.884) constructions using regular two-graphs have yielded
nothing better asymptotically than a constant times d

√
d.
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