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Abstract

This note extends a recent result of Kannan, Tetali and Vempala to com-
pletely solve, via a simple proof, the problem of random generation of a labeled
tournament with a given score vector. The proof uses the method of path cou-
pling applied to an appropriate Markov chain on the set of labeled tournaments
with the same score vector. MRS: 65C05, 05C20.

1 Introduction

A tournament is an oriented complete graph, which models a real-life round robin
tournament with no ties. The score vector of a tournament is the sequence of out-
degrees of the vertices of the tournament. In general, given a score vector with n
scores, there can be an exponential (in n) number of labeled (and unlabeled) tour-
naments which have the given score vector (see e.g. [7], [6], and references therein).
Although the problem of counting the number of labeled (or unlabeled) tournaments
with the same score vector exactly seems very difficult, no #P-hardness result is
known to that effect.

In this work we show that a simple algorithm based on the Markov chain Monte
Carlo method is actually a very efficient algorithm for generating a labeled tournament
uniformly at random from among the set of all tournaments with a given score vector.

The problem we consider is one of two problems studied in a recent paper of Kan-
nan, Tetali and Vempala [6]: namely, randomly generating labeled bipartite graphs
with a given degree sequence, and randomly generating labeled tournaments with a
given score vector. For each of the two problems they designed an appropriate Markov
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chain whose stationary distribution is uniform on the state space of the desired struc-
tures (namely, bipartite graphs and tournaments), and under certain assumptions
of “near regularity” of the degree sequences (and score vectors, respectively) they
showed that the chains converged to stationarity in polynomial time.

In this note we solve the tournament problem in full generality – we show that
without any restrictions on the score vector, given a score vector, a simple Markov
chain on the set of all labeled tournaments with the given score vector converges to
the (uniform) stationary distribution in time O(n3 log n). Thus our main contribution
is the extension of the result of [6] to all score vectors with a simple proof.

Following [6], we use the Markov chain Monte Carlo method to solve this problem.
However, in contrast to [6], which made use of canonical path techniques, we use the
technique of path coupling which was introduced by Bubley and Dyer [2, 3]. The
presentation of our proof follows the notation and terminology used by Jerrum [5].
For brevity, we omit the motivation behind the problem and refer the reader to [6]
and to references therein. Section 2 introduces all the terms used in this paper along
with the notation. Section 3 describes the Markov chain formally and also the proof
of rapid convergence to stationarity.

2 Preliminaries on Markov Chains

This section will review the definitions for rapid mixing of a discrete time Markov
chain, following the exposition in Sinclair [8], and Jerrum [5]. Let (Ω, P, π) denote an
irreducible and aperiodic Markov chain, M, (thus, the chain is ergodic), with finite
state space Ω, transition probability matrix P , and stationary distribution π. Here
P is non-negative and row-stochastic.

We assume that the chain is reversible, i.e., that it satisfies the detailed balance
conditions, π(x)P (x, y) = π(y)P (y, x), for all x, y ∈ Ω. For x, y ∈ Ω, and t ∈ Z+,
P t(x, y) will denote the t-step probability of going from x to y.

The time a Markov chain takes to reach the stationary distribution can be mea-
sured at time t by the total variation distance between P t and π, which is given
by

||P t, π||tv = max
x∈Ω

1

2

∑
y∈Ω

|P t(x, y)− π(y)|.

For ε > 0, the mixing time τ(ε) is defined

τ(ε) = min{t : ||P t′, π||tv ≤ ε, ∀t′ ≥ t}

One method of bounding the mixing time of M is given by the following lemma,
the “Coupling Lemma”, originally due to Doeblin [4], and our formulation is from [5].
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Lemma 1 Suppose that M is a countable ergodic Markov chain with transition prob-
ability matrix P , and let ((Xt, Yt) : t ∈ N) be a Markovian coupling, i.e., a Markov
process satisfying

P(Xt+1 = x′ | Xt = x ∧ Yt = y) = P (x, x′)

and
P(Yt+1 = y′ | Xt = x ∧ Yt = y) = P (y, y′)

Suppose further that t : (0, 1]→ N is a function such that P(Xt(ε) 6= Yt(ε)) ≤ ε for all
ε ∈ (0, 1], uniformly over the choice of initial state (X0, Y0). Then the mixing time
τ(ε) of M is bounded above by t(ε).

The last definition needed is that of rapid mixing, as defined in Sinclair [8].

Definition 2 A family of Markov chains, the size of whose state spaces is param-
eterized by n, is rapidly mixing iff there exists a polynomially bounded function q :
N× R+ → N such that the mixing time τn(ε) of the chain on the nth member of the
family satisfies

τn(ε) ≤ q(n, ln ε−1)

for all n and ε ∈ (0, 1].

3 The Markov Chain on Tournaments

This Markov chain will be studied by using the method of path coupling, introduced
by Bubley and Dyer [2, 3]. Path coupling is an extension of the coupling method, in
which the coupling is first defined on pairs of “adjacent” states and then is extended
to arbitrary pairs of states using shortest paths. The Coupling Lemma mentioned
above is still used. The state space must have an adjacency structure and a distance
function which will be defined below.

3.1 The State Space

Let Tn denote a labeled tournament on n vertices. The score vector, S(Tn), of a
tournament Tn is a sequence s = (s1, s2, . . . , sn), such that 0 ≤ s1 ≤ s2 ≤ · · · ≤ sn,
and each si is the out-degree of one of the vertices of Tn. Performing a ∆-reversal
is reversing the orientation of the arcs in a 3-cycle in the tournament. Let the state
space Ω = T (s) be the set of all labeled tournaments on n vertices with score vector
s = (s1, s2, . . . , sn). We will use the facts that T (s) is closed under ∆-reversals, that
is, ∆-reversals preserve the score vector, and also that any tournament on n vertices
can be transformed to any other tournament on n vertices with the same score vector
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by performing successive ∆-reversals. Note that Tn has precisely Ns =
(
n
3

)
−
∑

i

(
si
2

)
labeled 3-cycles (see [1]). The set of 3-cycles will be denoted by N∆.

For completeness we provide here a short proof that the state space is irreducible.
(This is proved in a similar way in [1]).

Lemma 3 If two tournaments on n vertices, T and T ′, have the same score vector,
then T can be transformed to T ′ by a finite sequence of ∆-reversals.

Proof. The key observation is that two different tournaments sharing the same
score vector differ in the orientation of an edge-disjoint collection of cycles. The proof
will proceed by induction on the length of the cycle. If the cycle is length 3, then
reversing its orientation is performing a ∆-reversal.

Now suppose that we can reverse a cycle of length ≤ k by using a finite se-
quence of ∆-reversals. Consider a cycle of length k + 1, passing through the vertices
v1, . . . , vk, vk+1, v1, in that order. There are two cases: either vi → v1 for some
i 6= k + 1, or v1 → vi for some i 6= 2.

In the first case, (v1, v2, . . . , vi) is a cycle of length i ≤ k, which may be reversed
by a sequence of ∆-reversals. After this we have reversed the orientation of the cycle
(v1, v2, . . . , , vi). Now since the orientation of arc (vi, v1) has been reversed, we have
a cycle (v1, vi, vi+1, . . . , vk+1). Again this is a cycle of length ≤ k, so by the inductive
hypothesis we can reverse its orientation using ∆-reversals. Now all the arcs in the
cycle (v1, . . . , vk, vk+1) have been reversed and the arc (v1, vi) has been reversed twice,
so it remains in it original orientation.

In the second case, the first cycle to reverse is (v1, vi, vi+1, . . . , vk+1), and after
that, since we will then have vi → v1, reverse the cycle (v1, v2, . . . , , vi) using the
inductive hypothesis. 2

Remark 1. The proof of Lemma 3 in fact shows that we can reverse a cycle of length
m in m − 2 ∆-reversals. This is easy to see, once it is noted that a 4-cycle can be
reversed in 2 ∆-reversals. A cycle of length m is reversed (following the inductive
step above) by reversing a cycle of length i+ 1 and then a cycle of length m− i+ 1.
This takes (i+ 1− 2) + (m− i+ 1− 2) = m− 2 ∆-reversals.

Let T ⊕ T ′ denote the edge-disjoint collection of cycles in which two tournaments
from T (s) differ. Let cycle i ∈ T ⊕ T ′ have length mi. Then the diameter of the
interchange graph on T (s) is ≤

∑
i∈T⊕T ′(mi − 2). Since

∑
imi ≤

(
n
2

)
, the diameter

is ≤
(
n
2

)
− 2(# cycles in T ⊕ T ′) ≤

(
n
2

)
− 2.

Remark 2. Brualdi and Qiao [1] give an example of a class of tournaments on n
vertices for which the diameter of the interchange graph is n − 2, and showed that
the diameter of the interchange graph on regular (resp. near-regular) tournaments
on n vertices with score vector s is at least (n − 1)2/4, (resp. n(n − 2)/4). They
conjecture that this is the actual diameter of those interchange graphs. The difficulty
in determining the diameter of the interchange graph (and consequently a lower bound
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on the mixing time of the Markov chain M) reduces to determining the number of
cycles and their lengths in a tournament from the set T (s).

We will define an adjacency structure on the state space so that we may apply
path coupling. The most natural definition is to declare two states x and x′ (labeled
tournaments on n vertices with the same score vector) adjacent iff x′ may be obtained
from x with precisely one ∆-reversal. We will identify the state space with the vertices
of a graph whose edges join adjacent states, as defined above. This graph will be
referred to as the interchange graph. The distance between two states in the state
space, namely, the distance d(x, x′), is the least number of ∆-reversals needed to
transform x into x′. With this definition, the interchange graph is an unweighted,
undirected graph, with vertex set Ω, and d is the ordinary graph distance on it.

3.2 The Markov Chain

The natural Markov chain M on Ω = T (s), which is a random walk on the interchange
graph, is defined as follows:

• Let Xt be the current state of the chain, Xt ∈ Ω, so that Xt is a tournament
with score vector s.

• Pick a 3-cycle uniformly at random (u.a.r) from the Ns 3-cycles in Xt.

• Pick r ∈ {0, 1} u.a.r. If r = 0, Xt+1 = Xt, if r = 1, perform the ∆-reversal,
which we will denote Xt+1 = Xt ◦∆.

T (s) is closed under ∆-reversals, and the interchange graph on T (s) is connected
under ∆-reversals, so M is irreducible. Hence it has a unique stationary distribution
π. Since P (x, y) = P (y, x) for all x, y ∈ Ω, M is symmetric and hence the stationary
distribution is uniform over the state space. The self-loop probabilities are defined
to be non-zero, so M is also aperiodic. Now we are ready to state our main result
formally:

Theorem 4 The mixing time of the Markov chain on Ω = T (s) described above is
bounded from above by c1Ns(lnn+ ln ε−1), for ε ∈ [0, 1), where c1 > 0 is an absolute
constant and Ns is number of 3-cycles in any tournament with s as the score vector.

3.3 The Coupling

The Markov chain on the set of all labeled tournaments on n vertices with the same
score vector is given above.

It is only necessary to define the path coupling for adjacent states, because the
coupling can then be extended via shortest paths in the interchange graph to arbitrary
pair of states.
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Suppose the current pair of states is (Xt, Yt), and that Xt is adjacent to Yt, i.e.,
Yt = Xt ◦ ∆i for some 3-cycle ∆i ∈ N∆(Xt). For convenience, denote ∆i = (a, b, c),
that is, a → b → c. Let S∆(Xt, Yt) denote the set of 3-cycles which is common
to both Xt and Yt. Let D∆(Xt) = N∆(Xt) \ S∆(Xt, Yt) and likewise, D∆(Yt) =
N∆(Yt) \ S∆(Xt, Yt). There is a one-to-one correspondence between D∆(Xt) and
D∆(Yt), because Xt and Yt are both tournaments with the same fixed score vector.

We define the coupling via a map σ : N∆(Xt) → N∆(Yt), where σ(∆) = ∆ if
∆ ∈ S∆(Xt, Yt), and the other cases are illustrated in Figure 1. The latter six cases
arise from considering all possible relationships between v and the vertices in the
3-cycle (a, b, c).

Recall that the only arcs that differ between Xt and Yt are those in the 3-cycle
a→ b→ c (resp. a→ c→ b).

The transition from (Xt, Yt) to (Xt+1, Yt+1) is given by the following experiment:

• Pick an ordered pair (∆, σ(∆)) uniformly at random from N∆(Xt)×N∆(Yt).

• Pick rX ∈ {0, 1} uniformly at random

• If (∆, σ(∆)) = ((a, b, c), (a, c, b)), set rY = 1− rX , otherwise set rY = rX

• rX = rY = 0 (Xt+1, Yt+1) = (Xt, Yt)
rX = rY = 1 (Xt+1, Yt+1) = (Xt ◦∆, Yt ◦ σ(∆))
rX = 1, rY = 0 (Xt+1, Yt+1) = (Xt ◦ (a, b, c), Yt)
rX = 0, rY = 1 (Xt+1, Yt+1) = (Xt, Yt ◦ (a, c, b))

Figure 2 shows (Xt, Yt) and (Xt+1, Yt+1) for one of the cases mentioned above.
This is typical of all the cases, except where σ(∆) = ∆ (in which case Xt+1 and Yt+1

also differ precisely in the 3-cycle (a, b, c)), and where (∆, σ(∆)) = ((a, b, c), (a, c, b)),
(in which case Xt+1 and Yt+1 are identical).

Lemma 5 For adjacent states Xt and Yt,

E(d(Xt+1, Yt+1)|Xt, Yt) ≤ (1− ρ)d(Xt, Yt), (1)

where 1
ρ

= Ns.

Proof. As explained above and illustrated in Fig. 1, in all except one of the Ns cases,
d(Xt+1, Yt+1) = d(Xt, Yt) = 1, and in the last case d(Xt+1, Yt+1) = d(Xt, Yt)− 1 = 0,
so that we obtain the inequality stated in the lemma. This is basically because in a
strong tournament on four vertices, there are two distinct 3-cycles and if one of them
is where Xt and Yt differ, then the coupling is designed in such a way as to map the
reversal of the other 3-cycle of Xt+1 with that of Yt+1; and this either preserves the
distance between Xt and Yt or reduces it. 2

The following lemma is due to Bubley and Dyer, and our formulation of it follows
Jerrum [5]:
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Figure 1: The map σ : N∆(Xt)→ N∆(Yt)
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Figure 2: The top picture shows (Xt, Yt), and the bottom shows (Xt+1, Yt+1)

Lemma 6 Suppose a coupling (Xt, Yt) has been defined for M on adjacent pairs of
states, and suppose that the coupling satisfies the contraction condition (1) on adjacent
pairs. Then the coupling can be extended to all pairs of states in such a way that (1)
holds unconditionally.

Proof of Theorem 4. As shown in Lemma 5, the Markov chain satisfies the contrac-
tion property required by Lemma 6. Iteration of Lemma 5 gives E(d(Xt, Yt)|X0, Y0) ≤
(1 − ρ)td(X0, Y0). Next, the interchange graph is connected via ∆-reversals, and as
shown in Remark 1, the diameter of the interchange graph is ≤

(
n
2

)
− 2. Thus

d(X0, Y0) <
(
n
2

)
, and

P(Xt 6= Yt) ≤ E(d(Xt, Yt)) ≤ (1− ρ)tn2/2.

The latter quantity is less than ε if t ≥ Ns(2 lnn+ ln(2ε)−1). 2

Remark 3. We may use Theorem 6.11 from the survey article on tournaments by
Reid and Beineke [7] to bound Ns. Let C(n, 3) denote the maximum number of 3-
cycles in a tournament on n vertices. Then Theorem 6.11 [7] yields C(n, 3) = 1

24
n(n2−

1), if n is odd, and C(n, 3) ≤ 1
24
n(n2 − 4), if n is even. Hence Ns ≤ C(n, 3) ≤ n3/24,

and so

τ(ε) ≤ (n3/24)(2 lnn+ ln(2ε)−1),
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as claimed in the introduction.
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