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Abstract

We study the possibility of the existence of a Katona type proof for the Erdős-
Ko-Rado theorem for 2- and 3-intersecting families of sets. An Erdős-Ko-Rado type
theorem for 2-intersecting integer arithmetic progressions and a model theoretic
argument show that such an approach works in the 2-intersecting case, at least for
some values of n and k.

1 Introduction

One of the basic results in extremal set theory is the Erdős-Ko-Rado (EKR) theorem [8]:
if F is an intersecting family of k-element subsets of an n-element set (i.e. every two
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members of F have at least one element in common) and n ≥ 2k then |F| ≤
(

n−1
k−1

)
and

this bound is attained. A similar result holds for t-intersecting k-element subsets (Wilson,

[11, 23]): if n ≥ (k − t + 1)(t + 1) and F is a t-intersecting family, then |F| ≤
(

n−t
k−t

)
.

The complete solution for other values of n, k, and t was discovered by Ahlswede and
Khachatrian [1].

The simplest proof of the Erdős-Ko-Rado theorem is due to Katona [15]. This proof
yields a stronger result, the Bollobás inequality, (Chapter 13 Theorem 2 in [4]), and
pursuing such generalizations is the main motivation for the search of new Katona type
proofs. We mention here a closely related result of Milner [20], which gives the maximum
size of a t-intersecting Sperner system. Katona [17] and Scott [21] gave cycle permutation
proofs to Milner’s result for t = 1.

Péter Erdős, Faigle and Kern [9] came up with a general framework for group-theoreti-
cal proofs of Erdős-Ko-Rado type theorems and Bollobás type inequalities that generalizes
the celebrated cyclic permutation proof of Katona for the classic Erdős-Ko-Rado theorem
to a number of other structures. They explicitly asked for t-intersecting generalizations
of their method. The present work was strongly motivated by their paper.

Katona type proofs are yet to be discovered for t-intersecting families of k-sets and for
t-intersecting Sperner families, for which no Bollobás inequality is known. The present
paper makes one step forward toward such extensions. We give a formal generalization
of Katona’s proof from the natural permutation group representation of the cyclic group
to sharply t-transitive permutation groups. To make sure that the formal generalization
actually works, an extra condition is needed. Then we study how this extra condition
for the case t = 2, formulated for finite fields, can be stated for 2-intersecting integer
arithmetic progressions, and then using the truth of the latter version, we show the
existence of a Katona type proof for the case t = 2, for infinitely many pairs (n, k) by
model theoretic arguments.

A permutation group acting on an n-element set is t-transitive, if any ordered t-set
of vertices is mapped to any ordered t-set of vertices by a group element, and is sharply
t-transitive if it can be done by a unique group element. Infinite families of sharply 2-
and 3-transitive permutation groups exist, but only finitely many such groups exist for
each t ≥ 4. Moreover, only the symmetric and alternating groups have highly transitive
(t ≥ 6) group actions. See [7] for details.

Sharply 2-transitive permutation groups do act on q vertices, where q is prime power,
and they have been classified by Zassenhaus [24], see also [7]. One of those groups is
the affine linear group over GF (q), that is, the group of linear functions f = ax + b :
GF (q) → GF (q) under composition with a 6= 0. In this paper we consider this sharply
2-transitive permutation group only.

The non-constant fractional linear transformations x → ax+b
cx+d

(a, b, c, d ∈ GF (q)) form
a group under composition and permute GF (q) ∪ {∞} under the usual arithmetic rules
and act sharply 3-transitively. Group elements fixing ∞ are exactly the linear transforma-
tions. No sharply 3-transitive permutation groups act on underlying sets with cardinality
different from q + 1.

In Katona’s original proof the action of a cyclic permutation group is sharply 1-
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transitive. Katona needed an additional fact, which is often called Katona’s Lemma.
As a reminder, we recall Katona’s Lemma in an algebraic disguise (cf. [19, Ex. 13.28(a)]):

Lemma 1 Consider the cyclic group Zn with generator g. Assume k ≤ n/2, and let
K = {g, g2, . . . , gk}. If for distinct group elements g1, g2, . . . , gm ∈ Zn the sets gi(K) are
pairwise intersecting, then m ≤ k. ♠
The major difficulty that we face is how to find analogues of Katona’s Lemma for sharply
2- and 3-transitive permutation group actions.

2 Katona’s proof revisited

Theorem 1 Let us be given a sharply t-transitive permutation group Γ acting on a set
X with |X| = n. Assume that there exists a Y ⊆ X with |Y | = k such that

for distinct group elements φ1, φ2, . . . , φm ∈ Γ,

if, for all i, j, |φi(Y ) ∩ φj(Y )| ≥ t, then m ≤ k!
(k−t)!

. (1)

Then, for any t-intersecting family F of k-subsets of X, |F| ≤
(

n−t
k−t

)
.

Proof. Let us denote by Sn the set of all permutations of X. For g ∈ Sn, let χg(Y ) be 0

or 1 according to g(Y ) /∈ F or g(Y ) ∈ F . We are going to count

∑
g∈Sn

χg(Y ) =
∑
φΓ

∑
g∈φΓ

χg(Y ) (2)

in two different ways (the sum
∑

φΓ is over all cosets of Γ in G). There are |F| elements
of F and each can be obtained in the form of g(Y ) for k!(n− k)! elements g ∈ Sn. Hence

|F|k!(n − k)! =
∑

g∈Sn

χg(Y ).

On the other hand, we have

∑
g∈φΓ

χg(Y ) ≤ k!/(k − t)!,

since if gi = φhi has the property that gi(Y ) ∈ F , then for all i we have hi(Y ) ∈
{φ−1(F ) : F ∈ F}, and hence {hi(Y ) : i = 1, 2, . . . , m} is t-intersecting and condition
(1) applies to it. We have the same upper bound for the summation over any coset. To
count the number of cosets note that a sharply t-transitive permutation group acting on
n elements has n!/(n − t)! elements. By Lagrange’s Theorem the number of cosets is

n!
n!/(n−t)!

= (n − t)!. Combining these observations we have

|F|k!(n − k)! ≤ (n − t)!k!/(k − t)!
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and the theorem follows. ♠
Note that a cyclic permutation group on n elements acts sharply 1-transitively, and

condition (1) is the conclusion of Lemma 1 in the usual presentations of Katona’s proof
in texts.

Theorem 1 can be strengthened slightly. Call a permutation group r-regularly t-
transitive if any ordered t-set is mapped to any ordered t-set by precisely r group elements.
Thus, a permutation group is 1-regularly t-transitive if and only if it is sharply t-transitive.
If Γ has r-regularly t-transitive action, the conclusion of the theorem remains true if we
replace the right hand side of the inequality in condition (1) by rk!

(k−t)!
.

3 2-intersecting arithmetic progressions

Given a field F , let us denote by 1, 2,..., k the field elements that we obtain by adding
the multiplicative unit to itself repeatedly.

In order to apply Theorem 1 for the case t = 2 using the affine linear group, we tried
Y = {1, 2,..., k}, and needed the corresponding condition (1). We failed to verify directly
condition (1) but we were led to the following conjecture:

Conjecture 1 If A1, A2, . . . , Am are k-term increasing arithmetic progressions of rational
numbers, and any two of them have at least two elements in common, then m ≤

(
k
2

)
.

It is easy to see that Conjecture 1 is equivalent for rational, real and for integer arith-
metic progressions, and therefore we freely interchange these versions. This conjecture
is the best possible, as it is easily shown by the following example: take two distinct
numbers, x < y, and for all 1 ≤ i < j ≤ k take an arithmetic progression where x is the
ith term and y is the jth term. This conjecture is the rational version of condition (1)
for t = 2 with Y = {1, 2, . . . , k}. Take the linear functions φi(x) = aix + bi. If φi(Y )

(i ∈ I) is 2-intersecting, then |I| ≤ 2
(

k
2

)
= k(k − 1), since any arithmetic progression can

be obtained in exactly two ways as an image of Y .
There is a deep result in number theory, the Graham Conjecture (now a theorem),

which is relevant for us: If 1 ≤ a1 < · · · < an are integers, then max
i,j

ai

gcd(ai, aj)
≥ n. The

Graham Conjecture was first proved for n sufficiently large by Szegedy [22], and recently
cases of equality were characterized for all n by Balasubramanian and Soundararajan [2],
e. g., the sequence ai = i (i = 1, 2, ..., n) meets this bound.

How many distinct differences can a set of pairwise 2-intersecting integer arithmetic
progressions of length k have? The Graham Conjecture immediately implies that the
answer is at most k − 1 differences. Indeed, assume that the distinct differences are
d1, d2, . . . , dl. Consider two arithmetic progressions of length k, the first with difference
di, the second with difference dj. The distance of two consecutive intersection points of
these two arithmetic progressions is exactly lcm(di, dj). This distance, however, is at most
(k − 1)di and likewise is at most (k − 1)dj. From here simple calculation yields

l ≤ max
i,j

di

gcd(di, dj)
= max

i,j

lcm(di, dj)

dj
≤ k − 1.
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It is obvious that at most k−1 pairwise 2-intersecting length k integer arithmetic progres-
sions can have the same difference. (The usual argument to prove Lemma 1 also yields

this.) Therefore, instead of the conjectured
(

k
2

)
, we managed to prove (k − 1)2.

Ford has proven most of Conjecture 1 [10]:

Theorem 2 Conjecture 1 holds if k is prime or k > e10100.

This opened up the way to the following argument which starts with the following straight-
forward lemmas. Their proofs are left to the reader.

Lemma 2 Given a natural number k, the following statement Υ(k) can be expressed in
the first-order language of fields:

“The characteristic of the field F is zero or at least k , and for all φ1, φ2, . . . , φk(k−1)+1 :
F → F linear functions if |φu({1, 2,..., k}) ∩ φv({1, 2,..., k})| ≥ 2 for all
1 ≤ u < v ≤ k(k − 1) + 1, then the k(k − 1) + 1 linear functions are not all
distinct.” ♠

Lemma 3 Let F be a field and Y = {a+1b, a+2b, . . . , a+kb} ⊂ F an arithmetic progres-
sion with k distinct elements. If Y has two elements in common with some subfield K of
F then Y ⊂ K . ♠

Recall that if F is a field then the prime field , P, of F is the smallest nontrivial subfield
of F . When the characteristic of F is a prime p > 0 then the prime field of F is P = GF (p),
the finite field of order p. When the characteristic of F is 0 then the prime field is P = Q ,
the field of rational numbers. Note that the theory of fields of characteristic 0 is not
finitely axiomatizable.

Lemma 4 The statement Υ(k) is true in some field F if and only if it is true in the prime
field P of F .

Proof. As P is a subfield of F it is clear that if Υ(k) is true in F then it is true in P. Now
assume that Υ(k) is true in P. Let φ1, φ2, . . . , φk(k−1)+1 : F → F be linear functions such
that for Y0 = {1, 2,..., k}, F = {φu(Y0) : 1 ≤ u ≤ k(k − 1) + 1} is a 2-intersecting family
of sets. If φ∗

u := φ−1
1 φu for u = 1, . . . , k(k − 1) + 1 then φ∗

1 = φ−1
1 φ1 = Id is the identity

map and F∗ = {φ∗
u(Y0) : 1 ≤ u ≤ k(k−1)+1} is also a 2-intersecting family of sets. Also

φ∗
1(Y0) = {1,2, . . . ,k} ⊂ P. As F∗ is 2-intersecting each of the arithmetic progressions

φ∗
u(Y0) will have at least two elements in P. Therefore by Lemma 3 φ∗

u(Y0) ⊂ P. If
φ∗

u(x) = aux + bu then φ∗
u(Y0) ⊂ P implies au, bu ∈ P and so φ∗

u : P → P. As Υ(k) is true
in P this implies there are u 6= v with φ∗

u = φ∗
v. But this implies φu = φv and so Υ(k) is

true in F . This completes the proof. ♠
Theorem 3 Let k be a fixed positive integer for which Conjecture 1 holds. For every
power n = pl of any prime p ≥ p0(k), condition (1) holds with Y = {1, 2,..., k} and t = 2
for the affine linear group over GF (n). Therefore Theorem 1 gives for these values of n
and k a Katona type proof for the 2-intersecting Erdős-Ko-Rado theorem. This is true in
particular if k is a prime or k > e10100.
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Proof. Observe first that for t = 2 with the choice of the affine linear group and Y = {1,
2,..., k}, Υ(k) is exactly the condition (1) of Theorem 1. Also observe that the validity
of Conjecture 1 for k is exactly the truth of Υ(k) for the field Q . Now we are going to
show, that for any fixed k, Υ(k) is true for all fields of characteristic p except for finitely
many primes. Assume that there are infinitely many primes, which are characteristics of
fields which provide counterexamples to Υ(k).

The proof uses the following well-known fact: If a first-order statement is true for
fields of arbitrary large characteristic, then it is true for some field F of characteristic zero
(cf. [Cor 2.1.10][5].)

By Lemma 4 this implies Υ(k) is false in the prime field of F which is the rational
numbers Q . This contradicts the assumption on k and thus completes the proof. ♠

4 Comments and open problems

It is not impossible to obtain an effective bound p0(k) in Theorem 3. Using a rectifica-
tion principle, due to Bilu, Lev and Ruzsa [3], we obtained p0(k) = 24(k−1)3 , which was
improved by Gábor Tardos (personal communication) to p0(k) = 6k3.

Is the 3-intersection version of Conjecture 1 true? This would yield a Katona type
proof for the Erdős-Ko-Rado theorem for t = 3.

Conjecture 2 If A1, A2, . . . , Am are images of the set {1, 2, . . . , k} under distinct non-
constant fractional linear transformations with rational coefficients x → aix+bi

cix+di
(i =

1, 2, . . . , m), such that |Ai ∩ Aj | ≥ 3 for all i, j, then m ≤ k(k − 1)(k − 2).

This conjecture is the best possible, as it is easily shown by the following example: take
any three distinct numbers, x < y < z, and for each ordered 3-set (i, j, k), 1 ≤ i, j, l ≤ k,
take the (unique) non-constant fractional linear transformation which maps i to x, j to y
and l to z.

Others think about Katona’s cyclic permutation method in a different way [18]. Their
understanding is that a variant of the theorem can easily be shown in a special setting,
and then a double counting argument transfers the special result to the theorem. We
acknowledge that the proof of Theorem 1 can be written in this way, and one can avoid
using groups.

One might ask: why is then the big fuss with groups? The answer is: we would hardly
find our results presented here without using groups. Furthermore, in a forthcoming joint
paper with Márió Szegedy we further justify the use of groups, showing that Katona type
proofs in the group theoretic setting are more of a rule than an exception.

Acknowledgement. We are indebted to Dominique de Caen, Éva Czabarka, and Péter
Erdős for conversations on the topic of this paper. We are also indebted to an anonymous
referee for a careful reading of the manuscript and valuable comments.
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