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Abstract

The arc-representation of a graph is a mapping from the set of vertices to the arcs
of a circle such that adjacent vertices are mapped to intersecting arcs. The width
of such a representation is the maximum number of arcs having a point in common.
The arc-width(aw) of a graph is the minimum width of its arc-representations. We
show how arc-width is related to path-width and vortex-width. We prove that
aw(Ks,s) = s.

1 Introduction

The notation and terminology of the paper follows [2].
In the Graph Minors project Robertson and Seymour (often with other co-

authors) introduced several minor-monotone graph parameters. We recall their
first such parameter. Our definition is a dual to the original one appearing in [3].
About the equivalence, see e.g. Exercises 24, 25 in Chapter 12 of [2].

Definition 1 The interval-representation of a graph G is a mapping φ from its
vertex set to the intervals of a base line, such that adjacent vertices are mapped to
intersecting intervals. The width (in a representation) of a point P of the base line
is the number of intervals containing P . The width of φ is the maximum width
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of the points of the base line. (This is equal to the maximum number of pairwise
intersecting intervals.) The interval-width of a graph G is the minimal possible
width of such interval-representations, pw∗(G) in notation.

Actually, Robertson and Seymour defined path-width(pw), which is one less than the
above defined interval-width. They extended the notion of path-width by changing
the base line to a tree, and substituting intervals with subtrees. (This is still the
dual, not the original definition.) The new parameter thus obtained is the tree-
width of a graph. We take another route for extension. We substitute the base line
with a base circle:

Definition 2 The arc-representation of a graph G is a mapping % from the vertex
set V (G) to the set of arcs of a base circle, such that adjacent vertices of G are
mapped to intersecting arcs. The width (in a representation) of a point P of the
base circle is the number of representing arcs containing P . The width of % is the
maximum width of the points of the base circle. (This is not the maximum number
of pairwise intersecting arcs.) The arc-width of a graph G is the minimal possible
width of such arc-representations, aw(G) in notation.

Our base circle will be the unit circle on the coordinate-plane, i.e. the set of points
(cos x, sin x), where x ∈ [0, 2π). An arc is a connected subset of the circle. It is
easy to see that the notion of arc-width is not changed if we insist on representing
vertices with closed arcs. We also assume that all the representing arcs are proper
subsets of the circle. Fixing the clockwise orientation of the circle, each arc has a
unique starting and ending point. Let arc(x1, x2) denote the closed arc starting at
(cos x1, sin x1) (the left endpoint of the arc) and ending at (cos x2, sin x2) (the right
endpoint of the arc). In this way, points on the circle and their corresponding angles
are naturally identified. For an arc-representation % of G, the left endpoint of the
arc representing u is denoted by l(u), and the right endpoint is denoted by r(u),
i.e. %(u) = arc(l(u), r(u)).

It is easy to prove the minor-monotonicity of the newly introduced graph pa-
rameter.

Lemma 3 Arc-width is minor-monotone. 2

2 Connections to other graph parameters

Robertson and Seymour proved that any graph without H as a minor can be ob-
tained by clique sums from graphs that can be “nearly drawn” in a surface Σ− kH

(where Σ is any closed surface such that H can not be drawn in it, and kH is a
suitable integer). This theorem extends their earlier results, when they established
similar structural theorems in the cases when H was a tree, respectively a planar
graph. This extension is crucial in the proof of the Graph Minor Theorem. To
measure how nearly a graph is drawn in Σ − kH , they introduced the notion of
vortex-decomposition in [4], see also [5]. Using their previous results on path-width,
Robertson and Seymour did not need to investigate this new parameter in depth
(in spite of its inherent naturalness).

the electronic journal of combinatorics 8 (2001), #R34 2



Definition 4 [5] Let G be a graph, and let U be a cyclic ordering of a subset of its
vertices. We say that (Xu)u∈U is a vortex-decomposition of the pair (G,U) if

(V 1) u ∈ Xu for every u ∈ U ,
(V 2)

⋃
u∈U Xu = V (G), and every edge of G has both ends in some Xu,

(V 3) for every vertex v ∈ V (G), the set of all u ∈ U with v ∈ Xu is a contiguous
interval (the empty set, or the whole U are possibilities).

We say that (Xu)u∈U has width k, if |Xu| ≤ k for every u ∈ U .
The vortex-width of G (denoted by vw(G)) is the minimum width taken over all

vortex-decompositions of G.

Lemma 5 aw(G) = vw(G).

Proof: We construct a vortex-decomposition of G from an arc-representation of
G with the same width, and vice versa.

Assume first that there is a given arc-representation % of G of width k. Let L
be the set of the points of the base circle being a left endpoint of some representing
arc. For each element ` ∈ L, choose a vertex v such that the corresponding arc %(v)
starts at `. Let U be the set of chosen vertices. Let Xu := {v : %(v) ∩ l(u) 6= ∅}.

(V1) and (V3) are satisfied. An edge of G corresponds to two intersecting arcs
in %. Moreover, if two arcs intersect, then they also intersect above a left endpoint.
Hence (V2) holds. The width is k by the definition of Xu.

Assume now that a vortex-decomposition (G,U) of width k is given. To each
element u ∈ U associate a point Pu of the base circle, inheriting the cyclic order of
the vertices in U . By (V3) we can associate an arc to every vertex v as follows: if
v ∈ Xui1

, . . . ,Xuis
∈ U (following the cyclic order), then l(v) := Pui1

and r(v) :=
Puis

in %. In this way an arc-representation % arises. The width of % is k. 2

Arc-width is a natural modification of interval-width (path-width). There is a
quantitative connection, not just a formal one. The next lemma shows that the two
measures are within a factor of 2.

Definition 6 Let wmin and wmax denote the minimum and maximum width of the
points in an arc-representation %. Then % is called a (u,w)-representation if and
only if u = wmin(%) and w = wmax(%).

Observe that wmax(%)  wmin(%).

Lemma 7 Let % be an arc-representation of G. Then

(i) pw∗(G) ≤ wmax(%) + wmin(%) and

(ii)
⌈

1
2(pw∗(G) + 1)

⌉ ≤ aw(G) ≤ pw∗(G).

Proof: (i) Let i := wmin(%), j := wmax(%). There is a point x of the base circle
where the width is precisely i. Cut the base circle at x, and strengthen it to obtain
a line. In this way, the arcs not containing x become intervals. Substitute the arcs
containing x (there are i of them) with the whole line as a representing interval. We
produced an interval representation of G of width i + j.

(ii) The second inequality is trivial. The first one follows from (i). In the next
section, we exhibit examples showing that both bounds are sharp. 2
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3 Special graph classes

Extending the base line to a base circle (Definition 1 → Definition 2) does not always
help in the representation.

Lemma 8 If T is a tree, then aw(T ) = pw∗(T ).

Proof: If C denotes the base circle, and ` is a covering line of C, then let p : ` → C
be the corresponding continuous projection. We prove by induction that we can
construct an interval-representation λ of T from an arc-representation % of T , with
the following properties:
– every arc %(v) of C has a corresponding interval λ(v) on ` such that p(λ(v)) = %(v),
– λ is an interval-representation of T ,
– the width of λ at a point P of ` is at most the width of % at the point p(P ) of C.

Let us call such an interval-representation ‘good’.
If T is a single vertex, then we are easily done.
Assume now that the statement is true for any tree with at most k − 1 vertices.

Consider a tree T with k vertices. Delete a leaf v of T getting a graph T ′ with k−1
vertices. Let u be the only neighbor of v. Let % be an arbitrary arc-representation
of T , inducing an arc-representation %′ = %|T ′ of T ′. By the induction hypothesis we
can obtain a good interval-representation λ′ of T ′ based on %′. Let P ∈ %(u)∩ %(v).
There exists P̂ ∈ λ(u) such that p(P̂ ) = P . Let %(v) be an interval I of `, containing
P̂ , and intersecting none of the other intervals λ(w). Extending λ′ with I as λ(v),
we obtain the desired good interval-representation of T . 2

The condition on T is not necessary. There are other graphs satisfying aw(T ) =
pw∗(T ). In general one expects aw(G) < pw∗(G), e.g. we can easily see the follow-
ing.

Lemma 9 aw(Cn) = 2 and pw∗(Cn) = 3, where Cn is the cycle with n ≥ 3 vertices.
2

The complete graphs exhibit the other extreme: their arc-width and their path-
width are as far as possible from each other. This is not difficult to prove, so we
omit the details.

Lemma 10 aw(Kn) =
[

n
2

]
+ 1 2

The complete bipartite graph has much less edges. But surprisingly, its arc-width
is almost the same. We first give an arc-representation of Ks,s of width s. Then we
prove that this arc-width is best possible for Ks,s.

Lemma 11 aw(Ks,s) ≤ s.

Proof: Let the two color-classes of Ks,s be {x1, . . . , xs} and {y1, . . . , ys}. Consider
the following arc-representation of Ks,s (ε denotes an arbitrarily small positive real
number):

a1 = arc

(
−ε, (s − 2)

2π
s

+ ε

)
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b1 = arc

(
ε,

2π
s

− ε

)

Let φ denote the clockwise rotation by 2π
s , and φk that the rotation φ is repeated

k times. Let %(xi) = φia1, and %(yi) = φib1. %(xi) ∩ %(yj) 6= ∅, so % is an arc-
representation of Ks,s. Counting the width of the points of the base circle we get:

width
(

2π
s ± ε

)
= s, otherwise width(x) = s − 1. 2

Theorem 12 aw(Ks,s) = s.

Proof: We have to prove wmax(%(Ks,s)) ≥ s for any arc-representation % of Ks,s.
Let the two color-classes G and B be called green and blue. F := {%(v) : v ∈ G};
this is a system, not necessarily a set. We call the elements of F green arcs. Let
the set of left respectively right endpoints of the arcs in F be denoted by L and R.

1. We may assume that the 2s endpoints are different, because this can be
reached with a small movement of the endpoints (without increasing the width).

2. We may assume that
⋂
I∈F

I = ∅. If this were false, then the width would

already be at least s.
3. We may assume that if I 6= J ∈ F , then I 6⊂ J . If there were two arcs

I ⊂ J , then the endpoints would satisfy l(J) < l(I) < r(I) < r(J). Substitute I by
I ′ := (l(J), r(I)) and J by J ′ := (l(I), r(J)). The width did not change, and now
I ′ 6⊂ J ′. Moreover, if any arc A intersects I (and hence J), then A intersects both
I ′ and J ′, for I ⊂ I ′ and I ⊂ J ′. Hence we still have a representation of Ks,s. We
repeat this operation as long as we find two green arcs, one containing the other.
Our process will terminate, because the length of the longer arc after the change is
strictly less than the length of the longer arc before, and the possible length of the
arcs are determined by the possible 2s endpoints (hence finite).

4. Consider now the blue arcs. We may assume that they are minimal, i.e. we
cannot decrease them by maintaining the necessary intersections. Hence there are
only finitely many possible blue arcs (depending on the fixed green arcs). We call
these candidates. For an arc I ∈ F , consider its candidate complementary arc I ′

which is defined as follows: l(I ′) := r(I), and r(I ′) := l(J), where J ∈ F is the
arc such that if I ′ intersects J , then I ′ intersects every arc of F . In this way we
have defined a set system of arcs: F ′ := {I ′ : I ∈ F}. The correspondence I ↔ I ′

described above is a bijection. Moreover, the 2s endpoints of the arcs of F ′ are
exactly the same as the endpoints of the arcs of F . The left endpoints of the arcs
in F ′ are different. Hence we only have to show that two right endpoints cannot
coincide. Assume that l(I ′1) < l(I ′2) and r(I ′1) = r(I ′2). Then by 3 and the definition
of I ′2, r(I ′2) > l(I ′1), contradicting the definition of r(I ′1).

5. We consider now a special case, when the blue arcs are exactly the elements
of F ′. Let us take all the arcs in F or in F ′ as disjoint arcs. Glue them together at
the common endpoints. This ‘snake’ covers the base circle s− 1 times. To see this,
consider a point, l(I) say, I ∈ F . Cut the base circle at l(I) to get the non-negative
real line with l(I) = 0, and the natural < relation. l(I) ∈ J ′ if r(I) < r(J); l(I) ∈ J
if l(I) < r(J) < r(I), and for every J ∈ F , J 6= I, exactly one case occurs.

In this special case we are done: each endpoint is covered by s arcs.
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6. From now on we consider the general case, when the blue arcs constitute an
arbitrary system of n arcs from F ′. Let A ∈ F ′. Let µ(A) be the multiplicity of A
among the blue arcs.

The points of L and R divide the base circle into 2s open arcs. Let us call them
elementary arcs. We consider the width over an elementary arc, e say. There are
some arcs representing green vertices, which contain e. Moreover, there are some
candidate arcs A1, . . . , Ak of F ′ containing e. There are multiplicities associated
with these arcs, say µ(A1), . . . , µ(Ak) respectively. Assume there are q green arcs
containing e. Let F ′

e denote the set of blue arcs containing e. From 5 we know that
q + |F ′

e| = s − 1. If q +
∑

A∈F ′
e

µ(A) > s − 1, then we are done. Otherwise we get the

following inequality: ∑
A∈F ′

e

µ(A) ≤ |F ′
e|.

Observe that the number on the right-hand side is the number of terms on the
left-hand side.

7. For every elementary arc e, we define its successor e∗ as follows. Cutting
the base circle at r(e), consider the first arc Ie ∈ F , which is completely after r(e).
(Observe that ‘first’ is well-defined. If an arc starts first, it also has to end first
by 3.) There is an elementary arc beginning at r(Ie), which is defined to be e∗.
Formally, l(e∗) := min

I∈F :r(e)/∈I
r(I).

8. Let us define a directed graph D. The elementary arcs are the vertices of D,
and the edges of D are of the form (e, e∗). More precisely, we define the edges to
be geometric objects, namely (e, e∗) is the arc of the base circle (in clockwise order)
from the middle of e to the middle of e∗. Every elementary arc has out-degree one
in D, hence there is a directed circuit C in D.

9. The edges of C (glued together as in 5) cover the base circle homogeneously t
times. If we consider an arbitrary point P of the base circle, then there exist exactly
t edges of D going over P . Let I ′ ∈ F ′ be the first arc which is completely after
P . Every edge f over P has a tail e such that e is an elementary arc disjoint from
I ′. This is a consequence of the definition in 7. Also vice versa: if an edge f ∈ D
is not over P , then the tail e of f is an elementary arc which intersects I ′. We can
interpret this result in another way: whenever we consider an arbitrary arc I ′ ∈ F ′,
then the number of elementary arcs intersecting I ′ is a constant positive number, c
say.

10. Consider now the inequalities of 6 only for the vertices of C. Let V (C) =
{e1, . . . , ep}. Summing up all of these inequalities:∑

I∈F ′
e1

µ(I) ≤ |F ′
e1
|

...∑
I∈F ′

ep

µ(I) ≤ |F ′
ep
|
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————————————∑
e∈C

∑
I∈F ′

e

µ(I) ≤
∑
e∈C

|F ′
e|.

By 9 the left-hand side is c
∑
I′∈F

µ(I ′). Hence by 6, the right-hand side is c · s. We

obtain the following:
c

∑
I′∈F

µ(I ′) ≤ c · s.

c is positive, so simplification gives:∑
I′∈F

µ(I ′) ≤ s.

But we know that here equality holds. This is only possible if equality holds
everywhere in the above inequalities. Hence the width of the representation over an
elementary arc e ∈ C is exactly s − 1. Hence at the endpoint of an elementary arc
the width is at least s. 2

4 Concluding remarks

We pointed out a natural graph parameter which had been neglected so far. Consid-
ering the arc-width we found challenging problems (like determining the arc-width
of Ks,s). We hope that our work might lead to a better understanding of some
phenomena connected to the Graph Minor Theorem.

The results of Lemma 10 and Theorem 12 show that Ks,s has much fewer edges
than K2s, but its arc-width is less only by one. Hence we ask the following:

Problem 13 How many edges of K2s can be deleted without decreasing the arc-
width?

Both inequalities of Lemma 7(ii) are sharp by Lemma 8 and Lemma 10. A natural
question is the determination of all extremal graphs:

Problem 14 Characterize the graphs G with property aw(G) = pw∗(G), respec-
tively 2aw(G) = pw∗(G) + 1.

Arc-width is minor-monotone, hence we can also ask the excluded minors of the
class aw(G) ≤ k. Such a list is similar to the one we get for path-width. By
Lemma 8 some of the elements of the two parallel lists are the same. It is known
that the number of excluded trees for pw(G) ≤ k grows superexponentially with
k. So finding complete lists is an enormous task even for small k. However the
following comparison is of interest:

Problem 15 Is the number of excluded minors for arc-width k always greater than
the number of excluded minors for interval-width k?
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We have seen in the proof of Lemma 7(i) that knowing the arc-width of a graph is
not sufficient for some arguments. The minimum width of the representation is also
necessary to be taken into account. The minimum-maximum width pair (mM) is
a refinement of arc-width which carries more information. This parameter is still
minor-monotone. An interesting property of mM is that disjoint union of graphs
appear among the excluded minors. For further results see [1].

We also wonder if there is any real-life usage of arc-width, similar to the appli-
cation of circular-arc graphs.
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