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Abstract

For fixed integers p and q, an edge coloring of Kn is called a (p, q)-coloring if
the edges of Kn in every subset of p vertices are colored with at least q distinct
colors. Let f(n, p, q) be the smallest number of colors needed for a (p, q)-coloring
of Kn. In [3] Erdős and Gyárfás studied this function if p and q are fixed and n
tends to infinity. They determined for every p the smallest q (=

(p
2

)
− p + 3) for

which f(n, p, q) is linear in n and the smallest q for which f(n, p, q) is quadratic in
n. They raised the question whether perhaps this is the only q value which results
in a linear f(n, p, q). In this paper we study the behavior of f(n, p, q) between the
linear and quadratic orders of magnitude. In particular we show that that we can
have at most log p values of q which give a linear f(n, p, q).

1 Introduction

1.1 Notations and definitions

For basic graph concepts see the monograph of Bollobás [1]. V (G) and E(G) denote the
vertex-set and the edge-set of the graph G. Kn is the complete graph on n vertices. In
this paper log n denotes the base 2 logarithm. pr(n) denotes the parity of the natural
number n, so it is 1 if n is odd and 0 otherwise.

1.2 Edge colorings with at least q colors in every subset of p
vertices

The following interesting concepts were created by Erdős, Elekes and Füredi (see [2]) and
then later studied by Erdős and Gyárfás in [3] (see also [4]). For fixed integers p and q
an edge coloring of Kn is called a (p, q)-coloring if in every subset of p vertices at least q
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distinct colors appear on the edges. Let f(n, p, q) be the smallest number of colors needed

for a (p, q)-coloring of Kn. It will be always assumed that p ≥ 3 and 2 ≤ q ≤
(
p
2

)
. We

restrict our attention to the case when p and q are fixed and n tends to infinity. The study
of f(n, p, q) leads to many interesting and difficult problems. For example determining
f(n, p, 2) is equivalent to determining classical Ramsey numbers for multicolorings.

Among many other interesting results and problems in [3] Erdős and Gyárfás deter-

mined for every p the smallest q (qlin =
(
p
2

)
− p + 3) for which f(n, p, q) is linear in n

and the smallest q (qquad =
(
p
2

)
− bp

2
c + 2) for which f(n, p, q) is quadratic in n. They

raised the striking question if qlin is the only q value which results in a linear f(n, p, q). In
this paper we study the behavior of f(n, p, q) between the linear and quadratic orders of
magnitude, so for qlin ≤ q ≤ qquad. In particular we show that that we can have at most
log p values of q which give a linear f(n, p, q).

In order to state our results, first we need some definitions. We define the following
two strictly decreasing sequences ai and bj of positive integers with a0 = p. Roughly
speaking ai+1 = bai

2
c but for every second odd ai we have to add 1.

The two sequences are defined recursively. Assuming a0, a1, . . . , ai are already defined,
the sequence b1, b2, . . . , . . . , bi′ is just the subsequence consisting of the odd ai-s which are
greater than 1. Then we define

ai+1 =

{
dai

2
e if ai = bj for an even j

bai
2
c otherwise

Furthermore if ai+1 is odd and greater than 1, then bi′+1 = ai+1.
So, for example, if p = 2k, the sequence of ai-s is just all the powers of 2 from p to 1,

while there are no bj-s. Let lp be the smallest integer for which alp = 1.
We will need the following simple lemma.

Lemma 1. For 1 ≤ i ≤ lp, we have

ai ≤
p

2i
+ 1− 1

2i−1
<

p

2i
+ 1. (1)

The simple inductive proof is given in the next section. This lemma immediately gives
the bound

lp ≤ dlog pe. (2)

Our main result is the following.

Theorem 1. For positive integers p, 1 ≤ k ≤ lp, if q ≥ qlin + ak + k − 1, then

f(n, p, q) >
1

4p2
n

2k

2k−1 .

Using Lemma 1, we immediately get the following.
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Corollary 2. For positive integers p, 1 ≤ k ≤ lp, if q ≥ qlin + p
2k

+ k, then

f(n, p, q) >
1

4p2
n

2k

2k−1 .

Note that this is not far from the truth. (In fact, for k = 1 it gives the right order
of magnitude, namely quadratic.) Indeed, from the general probabilistic upper bound of
[3], we get the following.

Theorem 3. ([3]) For positive integers p, 1 ≤ k ≤ lp, if q ≤ qlin + p
2k
− 1

2k−1 , then

f(n, p, q) ≤ cp,q n
2k

2k−1 ,

where cp,q depends only on p and q.

Another corollary of the lower bound in Theorem 1 (k = lp and we use (2)) is that we
can have at most log p values with a linear f(n, p, q).

Corollary 4. If q ≥ qlin + log p, then

f(n, p, q) >
1

4p2
n

2lp

2lp−1 .

We have roughly a “gap” of size at most k in the values of q between the lower bound
of Corollary 2 and the upper bound of Theorem 3. It would be desirable to close this gap.
We believe, as is often the case, that the probabilistic upper bound (Theorem 3) is closer
to the truth. First we give some preliminary facts in the next section. Then in Section 3
we prove Theorem 1.

2 Preliminaries

Proof of Lemma 1: For the two sequences ai and bj defined earlier, we have

2ai+1 = ai +


0 if ai 6= bj for any j (if ai is even)
1 if ai = bj for an even j
(−1) if ai = bj for an odd j

(3)

lp is the smallest integer for which alp = 1. To prove Lemma 1 we use induction on
i = 1, 2, . . . , lp. It is true for i = 1. Assume that it is true for i and then for i + 1 from
the definition of ai+1 we get

ai+1 ≤
ai + 1

2
≤

p
2i

+ 1− 1
2i−1 + 1

2
=

p

2i+1
+ 1− 1

2i
,

and thus proving Lemma 1. 2
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Let l′p be the number of bj-s among a0, a1, . . . , alp−1. We introduce the following indi-
cator for 0 ≤ i ≤ lp − 1.

δi =

{
1 if bj−1 > ai ≥ bj for an odd j > 1, or if ai ≥ b1, or for even l′p if ai < bl′p
0 otherwise

We will need the following.

Lemma 2. For any 0 ≤ i ≤ lp − 1

i∑
j=0

alp−j = alp−i−1 − δlp−i−1 − pr(l′p). (4)

Proof: We use induction on i = 0, 1, . . . , lp − 1. (4) is true for i = 0, since alp = 1
and alp−1 = 1 + δlp−1 + pr(l′p).

Assuming that (4) is true for i, for i+ 1 using (3) we get

i+1∑
j=0

alp−j =
i∑

j=0

alp−j + alp−i−1 = 2alp−i−1 − δlp−i−1 − pr(l′p) = alp−i − δlp−i − pr(l′p),

proving the lemma. 2
From this we get:

Lemma 3. For any 1 ≤ k ≤ lp

k∑
j=1

aj ≥ a0 − ak − 1 = p− ak − 1.

Proof:

k∑
j=1

aj =
lp−1∑
j=0

alp−j −
lp−k−1∑
j=0

alp−j = a0 − δ0 − ak + δk ≥ a0 − ak − 1.

2

3 Proof of Theorem 1

Let 1 ≤ k ≤ lp and q ≥ qlin + ak + k − 1. Denote

h = h(n, k) =
1

4p2
n

2k

2k−1 . (5)

Assume indirectly that there is a (p, q)-coloring of Kn with at most h colors. From this
assumption we will get a contradiction.

Consider a fixed (p, q)-coloring of Kn with at most h colors. We will find a sequence
of monochromatic matchings M1,M2, . . . ,Mk in Kn. To obtain M1 observe that there
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is a color class (denoted by C1) in Kn which contains at least
(n2)
h

edges. In C1 all the
connected components have size at most p−1, since otherwise we immediately have a Kp

with fewer than q colors, a contradiction. Then in C1 we can clearly choose a matching
M1 (for example by taking one edge from each non-trivial component) which is even and
has size at least (

n
2

)
ph

.

Partition the vertices spanned by M1 into A1 and B1, so M1 is a matching between A1

and B1. Halve the vertices of A arbitrarily and denote one of the halves by A′1. Denote
by B′1 the set of vertices in B1 which are not matched to vertices in A′1 by M1. Consider
the complete bipartite graph between A′1 and B′1 and the color class (denoted by C2, not
necessarily distinct from C1) which contains the most edges in it.

Again from these edges in C2 we can choose a matching M2 with partite sets A2, B2

of even size at least (
|M1|

2

)2

ph
.

We continue in this fashion. Assume that Mi = (Ai, Bi) is already defined. Denote an
arbitrary half of the endvertices of Mi in Ai by A′i. The set of endvertices of the edges of
Mi in Bi which are not matched to vertices in A′i is denoted by B′i. Consider the complete
bipartite graph between A′i and B′i and the color class (denoted by Ci+1) which contains
the most edges in it.

From these edges in Ci+1 we can choose a matching Mi+1 of even size at least(
|Mi|

2

)2

ph
.

Then by induction we have

|Mi| ≥
n2i

(4ph)2i−1
.

Indeed, this is true for i = 1

|M1| >
n2

4ph
.

For i+ 1 we get

|Mi+1| ≥

(
|Mi|

2

)2

ph
≥

(
n2i

2(4ph)2i−1

)2

ph
=

n2i+1

(4ph)2i+1−1
.

This and (5) implies that |Mi| ≥ p ≥ ai, 1 ≤ i ≤ k and thus the matchings M1,M2, . . . ,Mk

can be chosen.
Next using these matchings Mi we choose a Kp such that it contains at most q − 1

colors, a contradiction. For this purpose we will find another sequence of matchings M ′i
such that M ′i ⊂Mi, |M ′i | = ai for 1 ≤ i ≤ k and

∣∣∣∪ki=1V (M ′i)
∣∣∣ ≤ p.
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M ′k is just a set of ak arbitrary edges from Mk. Assume that M ′k, . . . ,M
′
i+1 are already

defined and now we define M ′i . We consider the 2ai+1 vertices in V (M ′i+1) and the edges
of Mi incident to these vertices. We have four cases.

Case 1: If 2ai+1 = ai (so we have the first case in (3)), then this is M ′i .
Case 2: If 2ai+1 = ai+1 (second case in (3)), so ai = bj for an even j, then we remove

one of the edges from this set incident to a vertex in V (M ′i+1)∩A to get M ′i . Furthermore,
we mark this vertex in V (M ′i+1) ∩ A which is not covered by M ′i . This marked vertex is
going to be covered only by M ′i′ if ai′ = bj−1 (unless i′ = 0).

Case 3: If 2ai+1 = ai − 1 (third case in (3)) and there is no marked vertex at the
moment, then to get M ′i we add one arbitrary edge of Mi to these 2ai+1 edges.

Case 4: Finally, if 2ai+1 = ai− 1 and there is a marked vertex then to get M ′i we add
to these 2ai+1 edges the edge of Mi incident to the marked vertex and we “unmark” this
vertex.

We continue in this fashion until M ′k, . . . ,M
′
1 are defined. Then

∣∣∣∪ki=1V (M ′i)
∣∣∣ = p or

p − 1. Note that it can be p − 1 only if a0 = p = b1 is odd, and there is no other odd
ai among a1, a2, . . . , ak−1. In this case we add one more arbitrary vertex to get the Kp,
otherwise ∪ki=1V (M ′i) is the Kp.

By the above construction this Kp contains ai edges from the matching Mi (and thus
from color class Ci) for 1 ≤ i ≤ k.

Now since Lemma 3 implies

k∑
j=1

(aj − 1) ≥ p− ak − 1− k,

thus the number of colors used in this Kp is at most(
p

2

)
− p+ ak + k + 1 ≤ q − 1,

a contradiction. This completes the proof of Theorem 1. 2
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