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As well as spanning a number of decades, Aviezri Fraenkel’s mathematical work has
spanned a number of areas. He is well known as an expert on combinatorial games and
his contributions in that area are described by Richard Guy in the accompanying article.
He has also made advances in number theory, combinatorics, and computer science.

His doctoral thesis, written under the guidance of Ernst G. Straus at UCLA and
awarded in 1961, concerned a theorem of Ridout in the theory of Diophantine equations
[4]. At this time he was also working in the fledgling field of computer science. His first
published paper [3] was on a method for using Mersenne primes for the design of a high
speed multiplier. This was followed by one on “a very high-speed digital number sieve” [2]
which was a special-purpose sieving device which worked at the rate of 1010 numbers per
minute, 1000 times faster than the then state of the art IBM7090. This was before people
talked about computational complexity but his interest in the area remained, particularly
applied to his work on games. Other early work dealt with questions about transcendental
numbers, Diophantine approximation, and Diophantine equations.

Another early paper was with Joe Gillis [10] on the avoidability of repetitions in the
DNA code. This foreshadowed his later work on molecular biology and sequences.

A few years later he published “The bracket function and complementary sets of
integers”[6]. The bracket function is the integer part or floor function, at that time written
[x], now usually bxc . Two sets of integers are complementary if they are disjoint and their
union is the set of positive integers Z+. An old result is that the sets {bnαc : n ∈ Z+}
and {bnβc : n ∈ Z+} are complementary if and only if α and β are irrational and
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In this paper he investigated the inhomogeneous case in which the sets have the form
{bnα + γc : n ∈ Z+} and {bnβ + δc : n ∈ Z+}. This was the first of many papers
connected with the floor function.

The set S(α, β) = {bnα + βc : n ∈ Z+} is called a Beatty sequence. A disjoint covering
system of Beatty sequences is a collection {S(αi, βi) : i = 1, ..., t} such that every integer
belongs to exactly one of the sequences. In 1969 he made two famous conjectures about
such systems [7],[16]. The first is:

(1) In any disjoint covering system of Beatty sequences with t > 2 we must have at
least one of αi being a multiple of another.

He later strengthened this:
(2) If the αi in a disjoint covering system of Beatty sequences with t > 2 are distinct

then they must make up the set {(2t − 1)/2i : i = 0, ..., t− 1}.

the electronic journal of combinatorics 8 (no. 2) (2001), #I3 1



Both conjectures remain open despite a number of contributions towards their resolu-
tion by Aviezri and others. In particular Ron Graham[16] showed that no counterexample
exists with any αi irrational, Jamie Simpson [17] showed that the first conjecture holds if
mini{αi} ≤ 2 and the second if mini{αi} ≤ 3/2 and recently Rob Tijdeman [18] showed
that both conjectures hold for all t ≤ 6.

Closely related to coverings by Beatty sequences are covering congruence systems. A
set of congruences {ai (mod mi) : i = 1, ..., t} is a covering system if every integer n
satisfies

n ≡ ai (mod mi) (1)

for at least one value of i. If the moduli mi are distinct then the covering system is
incongruent (or regular). If (1) is satisfied by exactly one value of i for each n then
the system is disjoint (or exact). Two celebrated questions of Erdős are “Do there exist
incongruent systems with all moduli odd?” and “Can we construct incongruent systems
with the least modulus arbitrarily large?” In the 70’s Aviezri wrote several papers on
disjoint covering systems and a much-cited paper with Mushkin and Tassa “Determination
of [nα] by its sequence of differences”[9]. Such sequences frequently turn up in computer
science where this type of algorithm is fundamental.

In the mid 1980s he began a marathon sequence of some 15 papers with Mark Berger
and Alexander Felzenbaum (starting with [1]) on covering systems in which many ques-
tions were answered and generalizations made. Some of this work is described in Doron
Zeilberger’s article in the present volume. The work on covering systems and Beatty
sequences continued with other authors. A remarkable paper with Ron Holzman [11] con-
cerned the structure of the intersection of two Beatty sequences. This may be regarded
as a Beatty sequence version of the Chinese Remainder Theorem, a proof of which was
published by Aviezri early in his career [5].

A major problem in molecular biology is to determine the mechanism of protein folding.
In water, a protein folds into a shape which is believed to attain the minimum energy of
any configuration; simulating this process on a computer is very slow. Aviezri in [8] and
[12] showed that, in one model, finding this minimum energy configuration is an NP-hard
problem, which nature, somehow, can solve very quickly. Other researchers have since
shown that more refined models of protein folding are also NP-hard.

Some of his recent work has to do with problems in the combinatorics of words. A word
is a sequence of symbols, usually taken from a finite alphabet and usually written without
the customary commas. Thus abcbca is a word constructed from the alphabet {a, b, c}. A
square in such a word is a pair of adjacent identical blocks, thus the word above contains
the square bcbc. Binary words (from an alphabet of size 2) are of particular interest. He
and I have studied binary words which contain many squares [14], few squares [13] and
the number of squares in a special type of word called a Fibonacci word [15].

It is a privilege to know and work with Aviezri. I am grateful for his friendship, his
advice, his imagination and his gentle sense of humour. I remember driving him to my
university the day after he arrived in Australia. On the way we witnessed a minor traffic
accident; one car ran into the back of another at some traffic lights. “Ah,” said Aviezri,
shaking his head sadly, “I expected something like this would happen. Everyone is driving
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on the wrong side of the road.”
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