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Abstract

The generic linear function ax + b of a real variable, with a, b, x ∈ R, is usually
evaluated as a scale function (product) followed by a translation (sum). Our main
result shows that when such a function is variously combined with rounding func-
tions (floor and ceiling), exactly 67 inequivalent rounded generic linear functions
result, of which 38 are integer-valued and 29 are not. Several related results are also
established, with elucidation of the relevant equivalence class structures.
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1 Introduction

The floor function b·c and ceiling function d·e are familiar integer-valued functions of a
real variable which may be collectively referred to as rounding functions. They are defined
for all x ∈ R by

bxc = n precisely when n ≤ x < n + 1 and n ∈ Z,

dxe = n precisely when n − 1 < x ≤ n and n ∈ Z.

The half-bracket notation and the names “floor function” and “ceiling function” were
introduced by Iverson [8] in a book on programming published in 1962. The floor func-
tion is identical with the integer part function [·], a terminology and notation still widely
encountered in number theory. I am not sure when or by whom this notation was intro-
duced. Dickson, for example, used it when describing Legendre’s result for the power of
a prime in a factorial (see [2], page 263), but Legendre (see [11], page 10) actually used
the notation E(·), taking the initial E from the French “entier”. The ceiling function is
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identical with the so-called post office function, which rounds intermediate weights up to
the next scale point for postal charges. Many notations have denoted it, but none was
widely adopted prior to Iverson’s half bracket notation. A charming discourse on the
rounding functions is given in Chapter 3 of [5].

In contexts such as number theory, combinatorial game theory, and other branches
of discrete mathematics, it is not uncommon to find need or convenience motivating the
use of a combination of one or more rounding functions with some other type of function.
For example, rounding of rational functions is used to compute the power of a prime in a
factorial, and using inclusion-exclusion to count the number of primes below a specified
bound (both applications that go back at least to Legendre). Rounding of exponential
functions gives a convenient expression for the quadratic residue character of the prime
2 (see [7], page 75), and for the nth Fibonacci number (see [5], page 286). Multiple
roundings of polynomial functions have been studied by Fraenkel [4], and by H̊aland [6].
Indeed, the title of Fraenkel’s paper is in itself a brief guide to mathematical areas where
rounded functions have played a significant role in recent developments.

At first glance it might appear that combining rounding functions with linear func-
tions would have comparatively little potential interest. However, there is a considerable
literature on Beatty sequences, which arise from just one rounding of a linear function: for
fixed positive reals a and b, the Beatty sequence B(a, b) is the sequence of values assumed
by the function bax + bc as x runs through the positive integers (see [3], [4]). Beatty
sequences originated with a 1927 problem [1] in the American Mathematical Monthly.
Related problems keep appearing (see [9]). More than one rounding can be combined
with a linear function, to produce functions like dabxc + be. This motivates us to ask a
very basic question: How many distinct rounded linear functions can arise from a given
linear function? The answer turns out to be rather larger than might be initially expected,
and correspondingly the investigation is richer than expected.

To make our objective precise, we need to make a distinction which is rather unfamiliar,
because it is not usually of consequence. Our need is to distinguish between the form of a
function and the functions which are instances of that form. Specifically, we shall regard
any function x 7→ ax + b, in which a, b ∈ R are fixed and x ∈ R runs over all the reals,
as an instance of the function (a, b, x) 7→ ax + b, in which each of a, b, x ∈ R runs over all
the reals. In the latter a and b are conventionally parameters, while in the former they
are particular though unspecified real numbers. We define the generic linear function, or
more explicitly, the generic real-valued linear function of a single real variable and two real
parameters, to be the function L : R3 → R specified by L(a, b, x) = ax + b, and we define
a linear function, or more explicitly, a real-valued linear function of a single real variable,
to be a function fa,b : R → R specified by fa,b(x) = ax + b, for fixed a, b ∈ R. Writing
fa,b = L(a, b, ·) indicates this relationship. For convenience we admit the possibility a = 0,
and thus regard any constant function f0,b(x) = b as a (degenerate) linear function.

In the next section we shall define rounded generic linear functions and rounded linear
functions, and specify when two such functions are equivalent. Our main objectives will
be to count and describe the equivalence classes of rounded generic linear functions.
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2 Parenthesis-free notation

Using a parenthesis-free explicit notation gives us a very precise way to define and describe
the rounded functions we wish to study. We shall mostly use the postfix or reverse Polish
notation (e.g. see Section 2.3.2 of [10]), returning to more traditional notation to express
the main results. Thus the specification L(a, b, x) = ax + b for the generic linear function
becomes L(a, b, x) = ax ∗ b+. We wish to incorporate various rounding functions into the
structure of this function. Instead of pairs of half-brackets, it is helpful in this context
to have single symbols for the rounding functions. We shall use D for rounding down
(the floor function) and U for rounding up (the ceiling function), together with I for the
identity function.

Before we define rounded versions of the generic linear function, first note that the
composition of two rounding functions is always a rounding function. Specifically, in
reverse Polish notation the composition of two functions R, R′ : R → R, such that R, R′ ∈
{I, D, U}, always satisfies xRR′ = xR′′ with R′′ = R′ if R = I and R′′ = R if R 6= I.
Hence we gain sufficient generality by defining any rounded generic linear function, or
more explicitly, any rounded generic real-valued linear function of a single real variable
and two real parameters, to be any function L : R3 → R specified by

L(a, b, x) = aR0xR1 ∗ R2bR3 + R4

where Ri ∈ {I, D, U}, 0 ≤ i ≤ 4. It is natural to denote L by its operator string (with
the above convention regarding placement of the arguments a, b and x), thus

L = R0R1 ∗ R2R3 + R4.

For example, the specification L(a, b, x) = dabxc+be becomes L(a, b, x) = aIxD∗IbI +U ,
with the function itself denoted by L = ID ∗ II + U . It is convenient to refer to such
functions as roundings of the generic linear function.

Two rounded generic linear functions are formally distinct if their operator strings are
different, so there are 35 = 243 such functions. Two such functions L0, L1 : R3 → R are
equivalent if L0(a, b, x) = L1(a, b, x) for every (a, b, x) ∈ R

3 , and in this case we write
L0 ∼ L1. Thus our main question becomes: How many equivalence classes comprise the
243 formally distinct roundings of the generic linear function L(a, b, x) = ax ∗ b+, and
what is the structure of those equivalence classes?

If we evaluate a rounded generic linear function L = R0R1 ∗R2R3 +R4 at any specific
pair of parameters (a, b) ∈ R

2 , the result is a rounded linear function fa,b = L(a, b, ·), so
fa,b : R → R is specified by

fa,b(x) = aR0xR1 ∗ R2bR3 + R4.

Two such functions fa,b = L0(a, b, ·) and ga,b = L1(a, b, ·) are equivalent if fa,b(x) = ga,b(x)
for every x ∈ R, and then we write fa,b ∼ ga,b. If L0 ∼ L1 then fa,b ∼ ga,b must hold, but
the converse need not be true. For example, let L0 = DI ∗ II + D and L1 = UI ∗ II + D.
Then L0(1.5, 1, 1.5) = 2 and L1(1.5, 1, 1.5) = 4, so L0 6∼ L1. But for fa,b = L0(a, b, ·) and
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ga,b = L1(a, b, ·) we have f1,b(x) = bx + bc = g1,b(x) for all x ∈ R, so f1,b ∼ g1,b for every
b ∈ R. Thus, our main question has a corresponding “local” version: For fixed (a, b) ∈ R

2 ,
how many equivalence classes comprise the 243 formally distinct roundings of the linear
function fa,b(x) = ax ∗ b+, and what is the structure of those equivalence classes?

3 Rounded scale functions

Let us begin with scale functions. The generic scale function, or more explicitly, the
generic real-valued scale function of a single real variable and one real parameter, is the
function S : R2 → R specified by S(a, x) = ax, or S(a, x) = ax∗ in reverse Polish notation.
Its roundings are all the functions specified by

S(a, x) = aR0xR1 ∗ R2

where Ri ∈ {I, D, U}, 0 ≤ i ≤ 2. Reverting to operator strings, we have S = R0R1 ∗ R2.
Evidently there are 33 = 27 formally distinct roundings of the generic scale function. Let
us consider their equivalence classes.

The function R0R1∗R2 is always integer-valued if R2 ∈ {D, U}, and also if R2 = I and
R0, R1 ∈ {D, U}. Thus, there are 32 × 2 + 22 × 1 = 22 formally distinct rounded generic
scale functions which are integer-valued. This leaves 27 − 22 = 5 which are formally
distinct and noninteger-valued. When (a, x) = (5.26, 7.74), for example, the 27 formally
distinct functions take on 12 different integer values and 5 different noninteger values,
all within the interval [35..48], which contains just 14 integers. Hence the 5 noninteger-
valued functions are all inequivalent, and the integer-valued functions belong to at least
12 equivalence classes.

Note that if A, B ∈ {D, U} then

AB ∗ D ∼ AB ∗ U ∼ AB ∗ I,

so the 22 × 3 = 12 integer-valued functions just described belong in equivalence classes of
size at least 3. Hence the 22 formally distinct integer-valued rounded generic scale func-
tions comprise at most 14 equivalence classes. When (a, x) = (10.32, 20.82), for example,
these functions do take on 14 different integer values within the interval [200..231]. This
confirms that there are no further equivalences, and the 12 functions described above do
belong to 4 equivalence classes of size 3: it is natural to take AB ∗ I as the representative
of its equivalence class. Hence, reverting to traditional notation, we have

Theorem 1. The generic scale function S(a, x) = ax has 19 inequivalent roundings.
They form 14 equivalence classes of integer-valued functions (10 singletons and 4 classes
of size 3), and 5 equivalence classes of noninteger-valued functions (all singletons).
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TABLE 1: Roundings of S(a, x) = ax
Total: 19 functions

Integer-valued functions Noninteger-valued functions
Total: 14 functions Total: 5 functions

10 singletons: 5 singletons:
baxc, daxe, ax,

babxcc, dabxce, badxec, dadxee, abxc, adxe, bacx, daex.
bbacxc, dbacxe, bdaexc, ddaexe.

4 classes of size 3:
bacbxc, bacdxe, daebxc, daedxe.

A representative of each of the 19 equivalence classes is given in traditional notation
in Table 1. The generic scale function with integer parameter, S : Z× R → R defined
by S(n, x) = nx∗, is also of interest. Because D ∼ U ∼ I when restricted to Z, the
restriction of the parameter to Z results in clusters of three formally distinct functions
becoming equivalent. From Table 1 we immediately deduce

Corollary 1.1. The generic scale function S(n, x) = nx, with integer parameter n, has
5 inequivalent roundings. They form 4 equivalence classes of integer-valued functions (2
classes of size 3 and 2 of size 9) and one size 3 equivalence class of noninteger-valued
functions. The classes have representatives bnxc, dnxe, nbxc, ndxe and nx, respectively.

There are situations when it is appropriate to distinguish between roundings of a
function in which the last (“outermost”) operator is the identity function and those in
which it is one of the two rounding functions. Let us call the former mid roundings and
the latter final roundings. In particular, there are 32 = 9 formally distinct mid rounded
generic scale functions R0R1∗I ∼ R0R1∗, including the generic scale function itself (when
R0 = R1 = I), and there are 32 × 2 = 18 formally distinct final rounded generic scale
functions R0R1 ∗ A, where A ∈ {D, U}. The above results then yield

Corollary 1.2. The generic scale function S(a, x) = ax has 9 inequivalent mid roundings
(all with singleton equivalence classes) and 14 inequivalent final roundings (comprising 10
singletons and 4 equivalence classes of size 2). Exactly 4 mid roundings are integer-valued,
and each is equivalent to two of the final roundings.

Our calculations raise various open questions. For example, is there any (a, x) ∈ R
2

for which the 14 integer-valued roundings of the generic scale function S(a, x) = ax take
on more than 12 values within 14 consecutive integers? What is the length of a smallest
interval in which the 14 integer-valued roundings take on 14 distinct values? Is it true
that in such an interval all 19 inequivalent roundings take on 19 distinct values?
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The rounded scale functions are “localized” roundings of the generic scale function.
They have the form fa = S(a, ·) for some fixed value of the parameter a ∈ R, where
S = R0R1 ∗ R2 is a rounding of the generic scale function. The equivalence classes of all
such functions with the same value of a ∈ R can be deduced from Table 1, but attention
to detail is needed. Here is a brief discussion, omitting most of the details.

First note that for any fixed real r > 0 the spectrum of equivalence class sizes when
a = −r is the same as when a = r, but the membership of the classes is different, because
d−xe = −bxc and b−xc = −dxe hold for all x ∈ R. Since all rounded scale functions with
a = 0 are equivalent to the zero function, it suffices to restrict attention to those with
a = r > 0. When r ∈ Z

+, if r ≥ 2 there are 5 equivalence classes as specified by Corollary
1.1, and if r = 1 there are 2 equivalence classes of size 12, with representatives bxc and
dxe, and one class of size 3, with representative x (so D, U and I are the inequivalent
scale functions in this case).

Now suppose r ∈ R \ Z, r > 0. A theorem of McEliece (see [5], page 71) asserts that
any continuous strictly increasing function f : R → R with f−1(Z) ⊆ Z has the dual prop-
erties bf(x)c = bf(bxc)c and df(x)e = df(dxe)e. Hence brxc = brbxcc and its dual hold
for all x ∈ R when r = 1/n is a unitary fraction. If r is not a unitary fraction these func-
tions are not equivalent, since there exist k, m ∈ Z

+ such that m−1 < kr < m < (k+1)r,
so brxc = m and brbxcc = m − 1 when x = m/r, and similarly for the dual. Thus, when
0 < r < 1, five equivalence classes coalesce into one class of size 9 in which all members
are equivalent to the zero function, two singletons coalesce with two classes of size 3 to
form two classes of size 4 with representatives bxc and dxe, and the remaining classes
are all singletons if r is not a unitary fraction, but when r is such a fraction two pairs of
singletons coalesce to form two classes of size 2. When 1 < r < 2, two singletons coalesce
with two classes of size 3 to form two classes of size 4 with representatives bxc and dxe;
the remaining classes are 13 singletons and two classes of size 3. Finally, when r > 2 there
is no coalescence of equivalence classes. To summarize, we have

Corollary 1.3. For fixed a ∈ R, the scale function fa(x) = ax has 27 formally distinct
roundings, which form N(a) equivalence classes: N(a) = 1 if a = 0; N(a) = 3 if |a| = 1;
N(a) = 5 if |a| ≥ 2, a ∈ Z; N(a) = 11 if 0 < |a| < 1 and a is a unitary fraction;
N(a) = 13 if 0 < |a| < 1 and a is not a unitary fraction; N(a) = 17 if 1 < |a| < 2; and
N(a) = 19 if |a| > 2 and a ∈ R \ Z.

In the remainder of this paper no further explicit discussion will be devoted to equiva-
lence classes of “localized” functions. These are of secondary interest compared with the
generic functions, and the preceding discussion indicates how it is possible to determine
“local” equivalence classes from “generic” ones.

4 Rounded translations

Next let us consider translations. The development parallels that for scale functions in the
previous section, but the equivalence class structure turns out to be coarser. The generic
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translation, or more explicitly, the generic real-valued translation function of a single real
variable and one real parameter, is the function T : R2 → R specified by T (b, x) = b + x,
or T (b, x) = bx+ in reverse Polish notation. Its roundings are all functions of the form

T (b, x) = bR0xR1 + R2

where Ri ∈ {I, D, U}, 0 ≤ i ≤ 2, and we write T = R0R1 + R2. Again there are 33 = 27
formally distinct roundings of the generic translation.

As with rounded generic scale functions, there are 22 formally distinct rounded generic
translations which are integer-valued and 5 which are not. The former are the 18 final
roundings R0R1 + R2 with R2 ∈ {D, U}, together with the 4 mid roundings in which
R2 = I and R0, R1 ∈ {D, U}. The remaining 5 mid roundings are the formally distinct
noninteger-valued functions. When (b, x) = (1.2, 3.1), for example, the 27 formally dis-
tinct roundings of the generic translation take on 3 integer values and 5 noninteger values
within the interval [4..6]. Hence the 5 noninteger-valued functions are all inequivalent, so
they belong in 5 equivalence classes which are singletons. Furthermore, the integer-valued
functions must belong to at least 3 equivalence classes.

If A, B ∈ {D, U} a little reflection confirms the equivalences

AB + D ∼ AB + U ∼ AB + I ∼ IB + A ∼ AI + B.

The 22 × 5 = 20 integer-valued functions just described belong to equivalence classes of
size at least 5. The remaining two integer-valued roundings of the generic translation are
T0 = II +D and T1 = II +U . Let T2 = DD+I, T3 = DU +I, T4 = UD+I, T5 = UU +I.
Our discussion so far shows that any integer-valued rounding of the generic translation
is equivalent to at least one of the functions Ti, 0 ≤ i ≤ 5. It can be checked that at
any particular (b, x) ∈ R

2 these 6 functions have at most three distinct values. Hence to
verify that all six are inequivalent, we have to evaluate them at several pairs (b, x). For
(b, x) ∈ R

2 and n ∈ Z, let E(b, x, n) = {i : Ti(b, x) = n}. Then

E(1, 1.5, 2) = {0, 2, 4}, E(1, 1.5, 3) = {1, 3, 5},
E(1.5, 1, 2) = {0, 2, 3}, E(1.5, 1, 3) = {1, 4, 5},

and
E(1.5, 1.5, 2) = {2}, E(1.5, 1.5, 3) = {0, 1, 3, 4}, E(1.5, 1.5, 2) = {5}.

Since any two indices occur in different sets for at least one of these three choices of (b, x),
it follows that no two of the functions Ti, 0 ≤ i ≤ 5 are equivalent. We choose them as
the representatives of their equivalence classes, which must be singletons for T0 and T1,
and 5-sets for Ti, 2 ≤ i ≤ 5. Hence we have

Theorem 2. The generic translation T (b, x) = b+x has 11 inequivalent roundings. They
form 6 equivalence classes of integer-valued functions (2 singletons and 4 classes of size
5), and 5 equivalence classes of noninteger-valued functions (all singletons).
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TABLE 2: Roundings of T (b, x) = b + x
Total: 11 functions

Integer-valued functions Noninteger-valued functions
Total: 6 functions Total: 5 functions

2 singletons: 5 singletons:
bb + xc, db + xe. b + x,

b + bxc, b + dxe,
4 classes of size 5: bbc + x, dbe + x.
bbc + bxc, bbc + dxe,
dbe + bxc, dbe + dxe.

A representative of each of the 11 equivalence classes is given in traditional notation
in Table 2. The equivalence classes of the generic translation with integer parameter,
T : Z×R → R defined by T (n, x) = nx+, can readily be deduced from the above results.
The restriction of the parameter to Z results in clusters of three formally distinct func-
tions becoming equivalent, and we have

Corollary 2.1. The generic translation T (n, x) = n + x with integer parameter n has 3
inequivalent roundings. They form 2 equivalence classes of integer-valued functions (both
of size 12) and one size 3 equivalence class of noninteger-valued functions. The classes
have representatives n + bxc, n + dxe and n + x, respectively.

As with rounded generic scale functions, we distinguish mid and final roundings of the
generic translation. From Table 2 we have

Corollary 2.2. The generic translation T (b, x) = b+x has 9 inequivalent mid roundings
(all equivalence classes are singletons) and 6 inequivalent final roundings (2 singletons
and 4 equivalence classes of size 4). Exactly 4 equivalence classes of mid roundings are
integer-valued.

5 Rounded linear functions

Now we are ready to discuss the generic linear function L(a, b, x) = ax∗b+. First note that
it is a composition of the generic scale function S(a, x) = ax∗ with the generic translation
T (b, x) = bx+, in the following sense: inputting S(a, x) = ax∗ into the second argument
of T (b, x) = bx+ yields

T (b, S(a, x)) = bax ∗ + = ax ∗ b+ = L(a, b, x),

using commutativity of additon. More generally, let us now take S to be any rounded
generic scale function S = R0R1 ∗ R, and T to be any rounded generic translation T =
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R3R
′ + R4, with R, R′, Ri ∈ {I, D, U}, 0 ≤ i ≤ 4, i 6= 2. Then the corresponding

composition yields

T (b, S(a, x)) = bR3aR0xR1 ∗ RR′ + R4 ∼ aR0xR1 ∗ R2bR3 + R4 = L(a, b, x)

where RR′ = R2 ∈ {I, D, U} and L = R0R1 ∗ R2R3 + R4. Recall that R2 = R′ if R = I
and R2 = R if R 6= I. Thus the resulting composition function L is a rounded generic
linear function. Conversely, given any rounded generic linear function L, we can express
it as the composition of a suitable rounded generic scale function and rounded generic
translation. Thus the results of the two previous sections allow us to study all roundings
of the generic linear function.

There are 35 = 243 formally distinct roundings of the generic linear function. Those
which are integer-valued either have R4 ∈ {D, U}, or have R4 = I and R3 ∈ {D, U}
together with an integer-valued rounded generic scale function R0R1 ∗R2. It follows from
Theorem 1 that there are 34 × 2+22× 2 = 206 formally distinct rounded linear functions
which are integer-valued, and 243 − 206 = 37 which are not.

We can also directly count the noninteger-valued functions. They necessarily have
R4 = I, and either R3 = I, or else R3 ∈ {D, U} and the rounded generic scale function
R0R1 ∗R2 is noninteger-valued. By Theorem 1, the number of formally distinct functions
of this type is 33 × 1 + 5 × 2 = 37.

Now consider the equivalence classes of noninteger-valued rounded generic linear func-
tions. There are at most 19 classes with R3 = I because Theorem 1 shows there are 19
equivalence classes of rounded generic scale functions R0R1 ∗ R2, comprising 15 single-
tons and 4 classes of size 3. There are at most 5 × 2 = 10 classes with R3 ∈ {D, U}
and R0R1 ∗ R2 noninteger-valued, since Theorem 1 shows that the latter belong to just
5 classes, each of which is a singleton. Hence the 37 formally distinct noninteger-valued
rounded generic linear functions belong to at most 19 + 10 = 29 equivalence classes.
This number is in fact realized, because the functions take on 29 distinct values when
(a, b, x) = (10.32, 0.3, 20.82), for example.

Next consider the integer-valued rounded generic linear functions. Our earlier counting
showed that the formally distinct functions of this type comprise 34 × 2 = 162 final
roundings and 22 × 2 = 44 mid roundings. The mid roundings have R3 ∈ {D, U} and
integer-valued R0R1 ∗ R2. Let us first focus attention on them.

By Corollary 1.2, there are 14 inequivalent outer rounded generic scale functions R0R1∗
A, where A ∈ {D, U}. It follows from Theorem 1 that each integer-valued rounded generic
scale function is equivalent to one of them, so each equivalence class of mid rounded generic
linear functions contains a member of the form R0R1 ∗AB + I, where B ∈ {D, U}. Thus
there are at most 14 × 2 = 28 such equivalence classes. The 14 final roundings of ax∗ all
take on different values when (a, x) = (10.32, 20.82), for example. Values yielded by these
inputs distinguish all the functions with B = D and all the functions with B = U , but
do not fully discriminate between the two families. However, for fixed R0, R1 and A the
two formally distinct functions with B = D and B = U yield identical values if b ∈ Z but
distinct values if b 6∈ Z. It follows that all 28 functions are inequivalent.
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To identify all members of these 28 equivalence classes, note that

R0R1 ∗AB + I ∼ R0R1 ∗AB + D ∼ R0R1 ∗AB + U ∼ R0R1 ∗ IB + A ∼ R0R1 ∗AI + B.

Thus, the 10× 2 = 20 cases in which R0R1 ∗A belongs to a singleton class (Corollary
1.2) lead to equivalence classes of rounded generic linear functions which contain at least
5 formally distinct members: of these, one is a mid rounding and 4 are final roundings of
ax∗b+. In the remaining 4×2 = 8 cases, R0R1 ∗A belongs to a class of two final rounded
generic scale functions (Corollary 1.2), so to a class of 3 rounded generic scale functions
(Theorem 1):

R0R1 ∗ I ∼ R0R1 ∗ D ∼ R0R1 ∗ U

where R0R1∗ is integer-valued. The 3× 5 = 15 operator strings resulting from the earlier
equivalences include 3 strings each appearing twice, so each resultant equivalence class
of rounded generic linear functions contains at least 12 formally distinct members: 3 are
mid roundings and 9 are final roundings of ax ∗ b+.

This accounts so far for 20 × 1 + 8 × 3 = 44 formally distinct mid roundings, and
20 × 4 + 8 × 9 = 152 formally distinct final roundings. Thus, only 162 − 152 = 10
formally distinct final roundings remain. These must arise from the noninteger-valued
roundings of ax+, which comprise 5 singletons (Theorem 1), so have the form AI ∗II +B
or IR∗ II +B, where R ∈ {I, D, U} and A, B ∈ {D, U}. Suitable evaluations distinguish
these among each other and from the earlier 28 classes, so we have 5 × 2 = 10 further
singleton equivalence classes. This accounts for all 44 + 152 + 10 = 206 formally distinct
integer-valued roundings of ax ∗ b+. Hence

Theorem 3. The generic linear function L(a, b, x) = ax+b has 67 inequivalent roundings.
They form 38 equivalence classes of integer-valued functions (10 singletons, 20 classes of
size 5 and 8 of size 12), and 29 equivalence classes of noninteger-valued functions (25
singletons and 4 classes of size 3).

A representative of each of the 67 equivalence classes is given in Table 3. The table
readily yields the equivalence classes of the generic linear function with two integer pa-
rameters, L : Z2 × R → R, whence

Corollary 3.1. The generic linear function L(m, n, x) = mx + n, with integer param-
eters m, n, has 5 inequivalent roundings. They form 4 equivalence classes of integer-
valued functions (2 classes of size 34 and 2 of size 84) and one size 7 equivalence class of
noninteger-valued functions. Representatives for these classes are bmxc + n, dmxe + n,
mbxc + n, mdxe + n and mx + n, respectively.

The above results yield

Corollary 3.2. The generic linear function L(a, b, x) = ax + b has 57 inequivalent mid
roundings (45 singletons and 12 equivalence classes of size 3) and 38 inequivalent final
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roundings (10 singletons, 20 equivalence classes of size 4, and 8 of size 9). Exactly 28
equivalence classes of mid roundings are integer-valued.

TABLE 3: Roundings of L(a, b, x) = ax + b
Total: 67 functions

Integer-valued functions Noninteger-valued functions
Total: 38 functions Total: 29 functions

10 singletons:
bax + bc, dax + be,

babxc + bc, dabxc + be, 25 singletons:
badxe + bc, dadxe + be, ax + b,
bbacx + bc, dbacx + be, abxc + b, adxe + b,
bdaex + bc, ddaex + be. bacx + b, daex + b,

babxcc + b, dabxce + b,
20 classes of size 5: bbacxc + b, dbacxe + b,

baxc + bbc, baxc + dbe, badxec + b, dadxee + b,
daxe + bbc, daxe + dbe, bdaexc + b, ddaexe + b,

babxcc + bbc, babxcc + dbe, baxc + b, daxe + b,
badxec + bbc, badxec + dbe, ax + bbc, ax + dbe,
dabxce + bbc, dabxce + dbe, abxc + bbc, abxc + dbe,
dadxee + bbc, dadxee + dbe, adxe + bbc, adxe + dbe,
bbacxc + bbc, bbacxc + dbe, bacx + bbc, bacx + dbe,
bdaexc + bbc, bdaexc + dbe, daex + bbc, daex + dbe.
dbacxe + bbc, dbacxe + dbe,
ddaexe + bbc, ddaexe + dbe. 4 classes of size 3:

bacbxc + b, bacdxe + b,
8 classes of size 12: daebxc + b, daedxe + b.

bacbxc + bbc, bacbxc + dbe,
bacdxe + bbc, bacdxe + dbe,
daebxc + bbc, daebxc + dbe,
daedxe + bbc, daedxe + dbe.

6 Some remarks and open questions

Various related questions for rounded generic linear functions remain open. For example,
one could ask for the maximum number of distinct values assumed by the integer-valued
roundings of the generic linear function within 38 consecutive integers, or the length of
a smallest interval in which the integer-valued roundings take on the maximum number
of distinct values, or the length of a smallest interval in which all roundings take on the
maximum number of distinct values.

Note that for any fixed (a, b, x) ∈ R
3 , the smallest interval A(a, b, x) which contains

all values assumed by the 67 inequivalent roundings of the generic linear function is a

the electronic journal of combinatorics 8 (no. 2) (2001), #R6 11



closed interval with integer endpoints. This follows from the observation that if L0 and
L1 are noninteger-valued rounded generic linear functions which achieve the minimum
and maximum values at (a, b, x) among the 29 inequivalent noninteger-valued roundings,
then bL0(a, b, x)c and dL1(a, b, x)e are values of integer-valued roundings, and the closed
interval B(a, b, x) with these integers as endpoints contains all the noninteger values as-
sumed by the roundings at (a, b, x). In fact, it is easy to check that aDxD ∗ bD+ and
aUxU ∗ bU+ are the endpoints of A(a, b, x) when (a, x) ∈ (R+)2, and to give similar
descriptions of the endpoints when (a, x) is in each of the other three quadrants of R2 .
When is A(a, b, x) strictly larger than B(a, b, x)?

We have discussed the generic linear function L : R3 → R defined by L(a, b, x) =
ax ∗ b+ in reverse Polish notation, and decomposed it into the generic scale function
S(a, x) = ax∗ followed by the generic translation T (b, x) = bx+. If we compose these two
functions in the reverse order we get

S(a, T (c, x)) = acx + ∗ = ax ∗ ac ∗ + = L(a, ac∗, x),

using commutative and distributive properties. The composition in this order almost
gives the generic linear function, but not quite: there is no choice of (a, c, x) ∈ R

3 to
correspond to L(0, b, x) with b 6= 0. But one can still study the near-generic linear
function M : R3 → R defined by M(a, c, x) = acx + ∗. Note that M(a, c, x) = cx + a∗, a
formulation which more closely parallels our specification for L(a, b, x). Then any rounded
near-generic linear function is a function M : R3 → R defined by

M(a, c, x) = cR0xR1 + R2aR3 ∗ R4

where Ri ∈ {I, D, U}, 0 ≤ i ≤ 4. For brevity, M = R0R1 +R2R3 ∗R4. Once again, there
are 35 = 243 formally distinct functions of this type. It might be supposed that these
rounded functions would belong to equivalence classes of the same number and spectrum of
sizes as those described in Theorem 3 for roundings of the generic linear function. However,
it may actually turn out that the near-generic linear function M(a, c, x) = (c + x)a
has 75 inequivalent roundings, distributed across 54 equivalence classes of integer-valued
functions (34 singletons, 4 classes of size 3, 8 of size 5 and 8 of size 15) and 21 equivalence
classes of noninteger-valued functions (17 singletons and 4 classes of size 5). In the
interests of brevity any proof of this claim is omitted, so the reader may treat it as a
conjecture rather than a result.

The author gratefully acknowledges hospitality of the Mathematics Department, University of
Newcastle, Australia where this paper was written during his sabbatical leave in early 2000.
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