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Abstract

The directed anti-Oberwolfach problem asks for a 2-factorization (each factor
has in-degree 1 and out-degree 1 for a total degree of two) of K2n+1, not with
consistent cycle components in each 2-factor like the Oberwolfach problem, but
such that every admissible cycle size appears at least once in some 2-factor. The
solution takes advantage of both Piotrowski’s decomposition techniques used to
solve Oberwolfach problems and the techniques used by the author to solve the
undirected anti-Oberwolfach problem.

1 Introduction

Suppose that there is a combinatorics conference with 2n + 1 people attending and it
is to be held over 2n days. Each evening there is a dinner which everyone attends.
To accommodate the many different sizes of meetings, the conference center has many
different sizes of tables. In fact, they have every table size from small two person tables to
large round tables seating 2n + 1 people. When this was noticed, the organizers, having
solved the pancyclic seating arrangement the year before [7], asked themselves a harder
question: can a seating arrangement could be made for each evening such that every
person sits next to every other person exactly once on each side (left and right) over the
course of the conference and each size table is used at least once.

Such a schedule, really a decomposition of the complete directed graph, ~K2n+1 into
spanning graphs all with in-degree and out-degree both equal one (collections of cycles),
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would be an example of a 2-factorization of ~K2n+1. Due to their usefulness in solving
scheduling problems, 2-factorizations have been well studied. The Oberwolfach problem
asks for a 2-factorization in which each subgraph in the decomposition has the same
pattern of cycles and much work has been done toward its solution [1, 2, 3]. This cor-
responds to the conference center using the exact same set of tables each night. Often
other graphs besides complete graphs of odd order are investigated. Oberwolfach ques-
tions have also been posed and solved for complete bipartite graphs [6]. The problem
posed in the introductory paragraph asks that every size cycle appear and so is called the
pancyclic 2-factorization problem, or, since it forces such different cycle sizes, the title of
‘anti-Oberwolfach problem’ emphasizes this contrast.

The conference organizers soon noted, like the year before [7] that tables of size 2n,
although available, were forbidden since the remaining people would be forced to sit at
tables of size 1 which did not exist and would preclude every pair being neighbors on
each side exactly once. However, unlike last year tables of size 2 and 2n − 1 were now
permissible due to the directed nature of the problem. After realizing this and doing a
preliminary count, the organizers then asked themselves for a schedule that would include
the first and last evening with everyone seated around one large table of size 2n + 1, two
evenings with a size 2 table paired with a size 2n − 1 table, two evenings with a size 3
table paired with a size 2n − 2 table and so forth up to two evenings with size n table
paired with a size n + 1 table.

If the solution methods from the directed Oberwolfach problem can be paired with
methods for the directed anti-Oberwolfach problem, then it is conceivable that that gen-
eral directed 2-factorization problems can be tackled with great power. This would enable
us to answer many different and new scheduling and tournament problems. We have as-
sociated our problem with an amusing context but we use it as a convenient showcase to
present powerful and very serious construction methods that can contribute to a broader
class of 2-factorizations.

The undirected anti-Oberwolfach question has been solved affirmatively for all com-
plete graphs of odd order, complete graphs of even order with a 1-factor removed and
all complete bipartite graphs [7]. We show here that all directed complete graphs of odd
order have a directed anti-Oberwolfach decomposition. The solution method is a com-
bination of Piotrowski’s approach to 2-factorization problems and the methods used to
solve the undirected pancyclic 2-factorization. We modify pairs of Hamilton cycles into
pairs of 2-factors with the desired cycle structures.

In this paper we offer first some definitions and discussion of directed 2-factorizations,
formalizing the notions discussed above. Then we solve the problem. We end with a
discussion of the solution method, possible extensions of the problem, and the power
these methods provide for constructing very general classes of 2-factorizations.

2 Definitions and Discussion

Unless otherwise mentioned, all graphs, and factors are directed.
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Definition 1. A directed pancyclic 2-factorization of a directed graph, ~G, of order v,
is a 2-factorization of ~G where a cycle of each admissible size, 2, 3, 4, . . . , n − 3, n − 2, n,
appears at least once in some 2-factor. Such a 2-factorization is called regular if each cycle
size appears equally often.

In this definition, when n < 4, or n − 2 < 2, then the only admissible cycle size is n
and the pancyclic 2-factorizations in these cases are trivial.

With this definition in mind, the directed anti-Oberwolfach problem asks for a regular
pancyclic 2-factorization of ~K2n+1. In every case, counting shows that the all the 2-factors,
except the two Hamilton 2-factors in ~K2n+1 must be of the form: an i-cycle and a v − i
cycle. We define here a notation to refer to the different possible kinds of 2-factors:

Definition 2. An i, (v− i)-factor is a 2-factor of an order v graph, ~G, that is the disjoint
union of an i-cycle and a (v − i)-cycle.

To produce 2-factors with the desired cycle structures we will decompose the union
of either two or four Hamilton 2-factors into 2-factors with smaller cycles. These decom-
positions will be achieved by taking the union to two Hamilton factors from a Walecki
decomposition of ~K2n+1, either consecutive pairs as used in [7] or orthogonal pairs, as
used by Piotrowski [5]. In [7] these methods of decomposition were fully formalized and
for formal structure we refer the reader there.

In each case the solution method will be similar. We will present a Hamilton 2-
factorization of each graph in question where the 2-factors are cyclic developments of
each other. We will then decompose the union of either consecutive or orthogonal pairs
or quadruples of Hamilton 2-factors into 2-factors with the desired cycle structures. The
fact that the set of Hamilton factors are cyclically generated from each other guarantee
that any union of two consecutive Hamilton factors are isomorphic to the union of any
other consecutive pairs and similarly for the pairs of orthogonal Hamilton factors. Thus
we can formulate general statements about the possible decompositions of these unions.

3 Solution for ~K2n+1

We will have to consider the the cases where n ≡ 0 mod 2 and n ≡ 1 mod 2 separately
because we will need to use slightly different Hamilton decompositions. These correspond,
respectively to the cases v ≡ 1 mod 4 and v ≡ 3 mod 4.

3.1 v ≡ 1 mod 4

For the case v = 4u + 1, we construct 2-factors by using the directed analogue of the
Walecki 2-factorization of ~K4u+1 given by Lucas [4]. Let the vertices of ~K4u+1 be repre-
sented by the set Z4u ∪ {∞}. Then the first 2-factor, Fu, is the directed cycle

(∞ 0 1 4u − 1 2 4u − 3 3 . . . 2u + 1 2u ).
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Figure 1: A standard directed Hamilton 2-factor of ~K4u+1.
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Figure 2: The union of two consecutive undirected 2-factors, Fu ∪ σ(Fu).

This 2-factor is shown in Figure 1. All other 2-factors are developed from Fu by application
of the cyclic automorphism σ where σ(∞) = ∞, σ(i) = i+1 (i < 4u−1) and σ(4u−1) = 0.
The map σ can be viewed as clockwise rotation of the first 2-factor shown in Figure 1.
Its action on the set of 2-factors is order 4u.

Lemma 3. The union of σi(Fu), σi+1(Fu), σi+2u(Fu) and σi+2u+1(Fu) can be decomposed
into four 2-factors such that the first two are 2i + 1, v − 2i − 1-factors and the second
two are 2j + 1, v − 2j − 1-factors, for any 1 ≤ i 6= j ≤ 2u − 2. Or alternatively the first
two are 2i + 1, v− 2i− 1-factors and the second two are directed Hamilton cycles, for any
1 ≤ i ≤ 2u − 2.

Proof. It is proved in [7] that the union of any two consecutive undirected Walecki Hamil-
ton 2-factors, shown in Figure 2, can be decomposed into two 2-factors where the first is a
2i+1, v−2i−1-factor and the second is a 2j+1, v−2j−1-factor, for any 1 ≤ i 6= j ≤ 2u−2
or the first is a 2i + 1, v − 2i − 1-factor and the second is a Hamilton cycle. The four
directed Hamilton 2-factors in the hypothesis of the lemma contain an arc in both di-
rections wherever there is an arc in the union of any two consecutive undirected Walecki
2-factors. Hence by doubling and oppositely directing the cycles constructed in [7] we
construct the desired four directed 2-factors.

Lemma 4. The union of σ`(Fu) and σ`+u(Fu) is isomorphic to the graph shown in Fig-
ure 3 and can be decomposed into a 2j +1, v−2j−1-factor and a 2j +2, v−2j −2-factor
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Figure 3: The union of Fu and σu(Fu). Note i ≤ u.
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Figure 4: A 4i+4, v−4i−4-factor and a 4i+3, v−4i−3-factor produced from Fu∪σu(Fu).

where 1 ≤ j ≤ 2u − 2.

Proof. Because the Fu are developed cyclically we can assume that ` = 0. In Figure 3, the
solid arcs are arcs from Fu and the dashed arcs are from σu(Fu). Switching the pairs with
the hollow arrow heads produces a 4i + 4, v − 4i− 4-factor and a 4i + 3, v − 4i− 3-factor.
As 0 ≤ i ≤ u−2 and the order of the 2-factors and the order of the cycles within each two
factor may be switched, we can construct all the needed 2-factors. The resulting directed
2-factors are shown in Figure 4.

Lemma 5. For u ≥ 2, the union of σ`(Fu), σ`+u(Fu), σ`+2u(Fu) and σ`+3u(Fu) can be
decomposed into two 2, v − 2-factors and two 3, v − 3-factors.

Proof. Without loss of generality, ` = 0 and the union of the four graphs is the same as
the graph shown in Figure 3 except that it contains an arc in each direction where there is
any arc. It can be decomposed, in the manner shown in Figure 5, into two 2, v−2-factors
and two 3, v − 2-factors.

Lemma 6. There is no regular pancyclic directed 2-factorization of ~K5.

Proof. Such a decomposition would consist of two 2, 3-factors and two Hamilton 2-factors.
It is easy to check that if the two digons are vertex disjoint then each must duplicate an
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Figure 5: The decomposition of Fu ∪ σu(Fu) ∪ σ2u(Fu) ∪ σ3u(Fu) into two 2, v − 2-factors
and two 3, v − 3-factors.
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Figure 6: Incomplete pancyclic directed 2-factorization of ~K5.

arc that is in the triangle corresponding to the other digon. This shows that the two
digons must intersect in exactly one vertex. The picture is shown in Figure 6. It is easily
verified that it is impossible to fill in the rest of the arcs without conflict.

Theorem 7. ~K4u+1 can be regularly pancyclically decomposed if and only if u ≥ 2.

Proof. There is no pancyclic direct 2-factorization of ~K5. When u = 2 the following cycles
are a pancyclic directed 2-factorization of ~K9:

( 0 1 2 3 4 5 6 7 8 )
( 0 2 1 3 5 4 6 8 7 )
( 0 3 ) ( 1 4 2 7 5 8 6 )
( 0 4 1 ) ( 2 5 7 6 3 8 )
( 0 5 1 6 ) ( 2 4 8 3 7 )
( 0 7 1 8 5 ) ( 2 6 4 3 )
( 0 6 5 2 8 4 ) ( 1 7 3 )
( 0 8 1 5 3 6 2 ) ( 4 7 )

For u ≥ 3, apply Lemma 5 to Fu ∪ σu(Fu) ∪ σ2u(Fu) ∪ σ3u(Fu) to construct two 2, v − 2-
factors and two 3, v−3-factors. Apply Lemma 3 to σ(Fu)∪σ2(Fu)∪σ1+2u(Fu)∪σ2+2u(Fu)
to construct a two Hamilton 2-factors and two 4, v−4-factors. And again apply Lemma 3
to σ1+u(Fu) ∪ σ2+u(Fu) ∪ σ1+3u(Fu) ∪ σ2+3u(Fu) to construct two 5, v − 5-factors and two
6, v − 6-factors. When u > 4, for 3 ≤ i ≤ u − 1 apply Lemma 4 to σi(Fu) ∪ σi+u(Fu) and
to σi+2u(Fu)∪σi+3u(Fu) to construct two 2i+1, v−2i−1-factors and two 2i+2, v−2i−2-
factors.

3.2 v ≡ 3 mod 4

To tackle the case when v = 4u + 3 we use a different Hamilton factorization. Instead
of having one “infinite” vertex as in Subsection 3.1 we have three, ∞, ∞1, and ∞−1.
The subscripts 1 and -1 refer to the similar role to the arcs of length 1 and -1 that
these two “infinite” points play. Let the vertices of ~K4u+3 be represented by the set
Z4u ∪ {∞,∞1,∞−1}. Then the first 2-factor, Fu, is the directed cycle
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Figure 7: A standard directed Hamilton 2-factor of ~K4u+3.

(∞ 0 ∞1 1 4u − 1 2 4u − 3 3 . . . 2u + 1 ∞−1 2u ).

This 2-factor is shown in Figure 7. 4u − 1 other 2-factors are developed from Fu by
application of the cyclic automorphism σ where σ(∞) = ∞, σ(∞1) = ∞1, σ(∞−1) =
∞−1, σ(i) = i + 1 (i < 4u− 1) and σ(4u− 1) = 0. The map σ can be viewed as clockwise
rotation of the first 2-factor shown in Figure 7. Its action on the set of 2-factors is order
4u. The last two 2-factors are the factor generated by all arcs of length 1 and the cycle
{∞,∞1,∞−1} and the reverse orientation of this factor. These are shown in Figure 8.
These final two 2-factors will remain as they are being used directly as the two 3, v − 3-
factors that we need. The rest of the needed 2-factors will be constructed from the unions
of pairs, σ`(Fu)∪σ`+u(Fu) or quadruples σ`(Fu)∪σ`+u(Fu)∪σ`+2u(Fu)∪σ`+3u(Fu) of the
cyclically developed Hamilton 2-factors by the following lemmas. Because the Hamilton
2-factors are developed cyclically we can assume that ` = 0 and the same considerations
discussed in Subsection 3.1 show us that Fu ∪ σu(Fu) is isomorphic to the graph shown
in Figure 9. The solid lines are the arcs from Fu and the dashed lines are the arcs from
σu(Fu). Similarly Fu ∪ σu(Fu) ∪ σ2u(Fu) ∪ σ3u(Fu) is isomorphic to the graph shown in
Figure 10. The solid lines are the arcs from Fu and σ2u(Fu) and the dashed lines are the
arcs from σu(Fu) and σ3u(Fu).

A nearly identical construction to that of Lemma 4 gives the following lemma. This
lemma is not used in the specific problem solved herein but maybe useful for other con-
structions.

Lemma 8. Fu∪σu(Fu) can be decomposed into a 6+4i, v−6−4i-factor and a 3+4i, v−
3 − 4i-factor for all 1 ≤ i ≤ v−11

4
.

Lemma 9. Fu ∪ σu(Fu) ∪ σ2u(Fu) ∪ σ3u(Fu) can be decomposed into two 2, v − 2-factors
and two Hamilton 2-factors.
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Figure 8: the final two 2-factors of ~K4u+3.
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Figure 9: Fu ∪ σu(Fu).
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Figure 10: Fu ∪ σu(Fu) ∪ σ2u(Fu) ∪ σ3u(Fu).
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Figure 11: Decomposition of Fu ∪σu(Fu)∪σ2u(Fu)∪σ3u(Fu) into two 2, v−2-factors and
two Hamilton 2-factors.
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Proof. Figure 11 shows the decomposition.

Lemma 10. Fu ∪ σu(Fu)∪ σ2u(Fu)∪ σ3u(Fu) can be decomposed into two 4, v − 4-factors
and two 5, v − 5-factors.

Proof. Figure 12 shows the decomposition.

Lemma 11. Fu ∪ σu(Fu)∪ σ2u(Fu)∪ σ3u(Fu) can be decomposed into a 4i + 4, v − 4i− 4-
factor a 4i + 5, v − 4i− 5-factor, a 4j + 4, v − 4j − 4-factor and a 4j + 5, v− 4j − 5-factor
for 1 ≤ i, j ≤ v−11

4
.

Proof. Figure 13 shows the decomposition.

Theorem 12. There exists a pancyclic 2-factorization of ~K4u+3 for all u ≥ 0.

Proof. The pancyclic 2-factorization of ~K3 consists of two Hamilton cycles and is trivially
found. A pancyclic 2-factorization of ~K7 is

(0 1 2 3 4 5 6)
(0 2 1 3 6 5 4)
(0 5) (1 4 2 6 3)
(1 6 4) (0 3 5 2)
(0 4 6 1) (2 5 3)
(0 6 2 4 3) (1 5)

A pancyclic 2-factorization of ~K11 is

(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14)
(0 2 1 3 5 4 6 8 7 9 11 10 12 14 13)
(0 3) (1 4 2 5 7 6 9 8 10 13 11 14 12)
(0 4 1) (2 6 3 7 5 8 11 9 13 12 10 14)
(0 5 1 6) (2 4 3 8 12 7 10 9 14 11 13)
(0 6 1 5 2) (3 9 4 12 11 7 13 8 14 10)
(0 7 1 8 2 9) (3 11 4 13 10 5 12 6 14)
(0 8 1 7 2 10 4) (3 13 6 11 5 14 9 12)
(0 9 1 10 2 7 3 12) (4 14 5 11 8 6 13)
(0 10 1 9 2 8 4 7 11) (3 14 6 12 5 13)
(0 11 1 12 2 13 7 14 8 5) (3 10 6 4 9)
(0 12 4 8 13 9 5 3 6 10 7) (1 11 2 14)
(0 13 5 9 7 12 8 3 1 14 4 10) (2 11 6)
(0 14 7 4 11 3 2 12 9 6 5 10 8) (1 13)

For u ≥ 3 we form the 2-factors that contain digons and two Hamilton 2-factors using
Lemma 9 from Fu∪σu(Fu)∪σ2u(Fu)∪σ3u(Fu). Construct the 4, v−4-factors and 5, v−5-
factors from σ(Fu)∪σ1+u(Fu)∪σ1+2u(Fu)∪σ1+3u(Fu) using Lemma 10. For 0 ≤ i ≤ u−3
construct two 6 + 2i, v − 6− 2i-factors and two 7 + 2i, v − 7− 2i-factors using Lemma 11.
All these two factors and the two 3, v − 3-factors shown in Figure 8 are a pancyclic
2-factorization of ~K4u+3.
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Figure 12: Decomposition of Fu ∪σu(Fu)∪σ2u(Fu)∪σ3u(Fu) into two 4, v−4-factors and
two 5, v − 5-factors.
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Figure 13: Decomposition of Fu∪σu(Fu)∪σ2u(Fu)∪σ3u(Fu) into a 4i+4, v−4i−4-factor
a 4i + 5, v − 4i − 5-factor, a 4j + 4, v − 4j − 4-factor and a 4j + 5, v − 4j − 5-factor.
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We did not use Lemma 8 but we include it to state the full flexibility of possible cycle
decompositions available to us. Most previous 2-factorization problems ask for uniform
2-factors or only allow a small range of cycle sizes. We have used the recreational anti-
Oberwolfach problem to introduce the study of admitting a wider range of cycles sizes
and less uniform 2-factors. Solving it is an example of the power of the decomposition
lemmas.

4 Conclusion

As a demonstration of a powerful method for a wide range of directed 2-factorization
problems we have solved the directed pancyclic 2-factorization for all directed complete
graphs of odd order except ~K5 which we prove has no directed pancyclic 2-factorization.
We start with a Walecki or slight modification of a Walecki 2-factorization of the complete
graph in question with a cyclic automorphism group. The union of consecutive or orthog-
onal pairs of the 2-factors is shown to be decomposable into two 2-factors with a wide
range of cycle structures by judicious swapping of edges between decompositions of these
unions. This flexibility of decomposition and the automorphism group allow the desired
solution to be constructed. The use of these methods to solve the pancyclic 2-factorization
problem indicates the strength and range of the constructions.

We propose that the methods outlined in this article might be useful for the following
problem: The construction of directed 2-factorizations with prescribed lists of cycle types
for each 2-factor. If each element in the list is a 2-factor with one or two cycles, then
the methods presented here nearly complete the problem. The only obstacle towards the
solution of these problems is the construction of pairs of 2-factors with the same cycle
type, the Oberwolfach aspect of the question.

The obvious next cases to solve are complete even directed graphs, ~K2n and complete
directed bipartite graphs, ~Kn,n. We have begun work on these and have found them more

challenging than case of the directed complete graph of odd order, ~K2n+1. The primary
difficulty seems to be to construct the two required 2-factors that contain digons. We
believe that the answer to both these questions is affirmative and that similar methods
to those used here will achieve the result.
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