
Computation in Coxeter Groups—I. Multiplication

Bill Casselman
Mathematics Department
University of British Columbia
Canada
cass@math.ubc.ca

Abstract. An efficient and purely combinatorial algorithm for calculating products in
arbitrary Coxeter groups is presented, which combines ideas of Fokko du Cloux and
myself. Proofs are largely based on geometry. The algorithm has been implemented in
practical Java programs, and runs surprisingly quickly. It seems to be good enough in
many interesting cases to build the minimal root reflection table of Brink and Howlett,
which can be used for a more efficient multiplication routine.

MR subject classifications: 20H15, 20-04
Submitted March 28, 2001; accepted August 25, 2001.

A Coxeter group is a pair (W, S) where W is a group generated by elements from its
subset S, subject to relations

(st)ms,t = 1

for all s and t in S, where (a) the exponent ms,s = 1 for each s in S and (b) for all
s 6= t the exponent ms,t is either a non-negative integer or ∞ (indicating no relation).
Although there some interesting cases where S is infinite, in this paper no harm will be
done by assuming S to be finite. Since ms,s = 1, each s in S is an involution:

s2 = 1 for all s ∈ S .

If we apply this to the other relations we deduce the braid relations:

st . . . = ts . . . (ms,t terms on each side) .

The array ms,t indexed by pairs of elements of S is called a Coxeter matrix. A pair of
distinct elements s and t will commute if and only if ms,t = 2. The labeled graph whose
nodes are elements of S, with an edge linking non-commuting s and t, labeled by ms,t,
is called the associated Coxeter graph. (For ms,t = 3 the labels are often omitted.)

Coxeter groups are ubiquitous. The symmetry group of a regular geometric figure (for
example, any of the five Platonic solids) is a Coxeter group, and so is the Weyl group
of any Kac-Moody Lie algebra (and in particular any finite-dimensional semi-simple
Lie algebra). The Weyl groups of finite-dimensional semi-simple Lie algebras are those
associated to the finite root systems An (n ≥ 1), Bn (n ≥ 2), Cn (n ≥ 2), Dn (n ≥ 4),
En (n = 6, 7, 8), F4, and G2. The Coxeter groups determined by the affine root systems

the electronic journal of combinatorics 9 (2002), #R25 1

associated to these are also the Weyl groups of affine Kac-Moody Lie algebras. The
other finite Coxeter groups are the remaining dihedral groups Ip (p 6= 2, 3, 4, 6), as well
as the symmetry group H3 of the icosahedron and the group H4, which is the symmetry
group of a regular polyhedron in four dimensions called the 120-cell.

In spite of their great importance and the great amount of effort spent on them, there
are many puzzles involving Coxeter groups. Some of these puzzles are among the most
intriguing in all of mathematics—suggesting, like the Riemann hypothesis, that there
are whole categories of structures we haven’t imagined yet. This is especially true in
regard to the polynomials Px,y associated to pairs of elements of a Coxeter group by
Kazhdan and Lusztig in 1981, and the W -graphs determined by these polynomials. In
another direction, the structure of Kac-Moody algebras other than the finite-dimensional
or affine Lie algebras is still largely uncharted territory. There are, for example, many
unanswered questions about the nature of the roots of a non-symmetrizable Kac-Moody
Lie algebra which probably reduce to understanding better the geometry of their Weyl
groups. The puzzles encountered in studying arbitrary Coxeter groups suggests that
it would undoubtedly be useful to be able to use computers to work effectively with
them. This is all the more true since many computational problems, such as comput-
ing Kazhdan-Lusztig polynomials, overwhelm conventional symbolic algebra packages.
Extreme efficiency is a necessity for many explorations, and demands sophisticated
programming. In addition to the practical interest in exploring Coxeter groups compu-
tationally, there are mathematical problems interesting in their own right involved with
such computation.

In this paper, I shall combine ideas of Fokko du Cloux and myself to explain how to
program the very simplest of operations in an arbitrary Coxeter group—multiplication
of an element by a single generator. As will be seen, this is by no means a trivial
problem. The key idea is due to du Cloux, who has used it to design programs for
finite Coxeter groups, and the principal accomplishment of this paper is a practical
implementation of his idea without the restriction of finiteness. I have not been able to
determine the efficiency of the algorithms in a theoretical way, but experience justifies
my claims of practicality.

It would seem at first sight that the techniques available for Coxeter groups are rather
special. Nonetheless, it would be interesting to know if similar methods can be applied
to other groups as well. Multiplication in groups is one place where one might expect to
be able to use some of the extremely sophisticated algorithms to be found in language
parsing (for example, those devised by Knuth to deal with LR languages), but I have
seen little sign of this (in spite of otherwise interesting work done with, for example,
automatic groups). For this reason, the results of this paper might conceivably be of
interest to those who don’t care much about Coxeter groups per se.

the electronic journal of combinatorics 9 (2002), #R25 2

1. The problem

Every element w of W can be written as a product of elements of S. A reduced
expression for an element of W is an expression

w = s1s2 . . . sn

where n is minimal. The length of w is this minimal length n. It is immediate from
the definition of W that there exists a unique parity homomorphism from W to {±1}
taking elements of S to −1. This and an elementary argument implies that if w has
length n, then sw has length n + 1 or n − 1. We write ws > w or ws < w, accordingly.

In order to calculate with elements of W , it is necessary to represent each of them
uniquely. In this paper, each element of W will be identified with one of its reduced
expressions. In order to do this, first put a linear order on S, or equivalently count
the elements of S in some order. In this paper I shall call the normal form of w that
reduced word NF (w) which is lexicographically least if read backwards. In other words,
a normal form expression is defined recursively by the conditions (1) the identity element
is expressed by the empty string of generators; (2) if w has the normal form

w = s1s2 . . . sn−1sn

then sn is the least element among the elements s of S such that ws < w and s1s2 . . . sn−1

is the normal form of wsn. The normal form referred to here, which is called the In-
verseShortLex form, is just one of two used often in the literature. The other is the
ShortLex form, in which s1 is the least element of the elements s of S such that sw < w,
etc. In the ShortLex form, w is represented by an expression which is lexicographically
least when read from left to right, whereas in InverseShortLex when read from right
to left (i.e. in inverse order).

For example, the Coxeter group determined by the root system C2 has two generators
〈1〉, 〈2〉 and m1,2 = 4. There are 8 elements in all, whose InverseShortLex words are

∅, 〈1〉, 〈2〉, 〈1〉〈2〉, 〈2〉〈1〉, 〈1〉〈2〉〈1〉, 〈2〉〈1〉〈2〉, 〈2〉〈1〉〈2〉〈1〉 .

The last element has also the reduced expression 〈1〉〈2〉〈1〉〈2〉, but this is not in the
language of InverseShortLex words.

The basic problem addressed by this paper is this:

• Given any element w = s1s2 . . . sn, find its InverseShortLex form.

By induction, this reduces to a simpler problem:

the electronic journal of combinatorics 9 (2002), #R25 3

• Given any element w = s1s2 . . . sn expressed in InverseShortLex form and an
element s in S, find the InverseShortLex form of sw.

I will review previous methods used to solve these problems, and then explain the new
one. In order to do this, I need to recall geometric properties of Coxeter groups. Since
Coxeter groups other than the finite ones and the affine ones are relatively unfamiliar,
I will begin by reviewing some elementary facts. The standard references for things not
proven here are the books by Bourbaki and Humphreys, as well as the survey article by
Vinberg. Also useful are the informal lecture notes of Howlett.

2. Cartan matrices

In this paper, a Cartan matrix indexed by a finite set S is a square matrix with real
entries cs,t (s, t in S) satisfying these conditions:

(C1) cs,s = 2 for all s.
(C2) For s 6= t, cs,t ≤ 0.
(C3) If cs,t = 0 then so is ct,s.
(C4) For s 6= t let ns,t be the real number cs,tct,s, which according to condition (2)

is non-negative. If 0 < ns,t < 4 then

ns,t = 4 cos2(π/ms,t)

for some integer ms,t > 2.

The significance of Cartan matrices is that they give rise to particularly useful represen-
tations of Coxeter groups, ones which mirror the combinatorial structure of the group.
Suppose V to be a finite-dimensional real vector space, and the αs for s in S to form
a basis of a real vector space V ∗ dual to V . Then elements α∨

s of V are determined
uniquely by the conditions

〈αs, α
∨
t 〉 = cs,t .

Since cs,s = 2, for each s in S the linear transformation on V

ρs: v 7→ v − 〈αs, v〉α∨
s

is a reflection—that is to say, a linear transformation fixing vectors in the hyperplane
{αs = 0}, and acting as multiplication by −1 on the transversal line spanned by α∨

s .
The map taking s to ρs extends to a representation of a certain Coxeter group whose
matrix is determined by the Cartan matrix according to the following conditions:

the electronic journal of combinatorics 9 (2002), #R25 4

(1) ms,s = 1 for all s;
(2) if 0 < ns,t < 4 then the integers ms,t are those specified in condition (C4);
(3) if ns,t = 0 then ms,t = 2;
(4) if n ≥ 4 then ms,t = ∞.

It is essentially condition (C4) that guarantees that the braid relations are preserved
by the representation when the ms,t are finite. If its entries cs,t are integers, a Cartan
matrix is called integral, and for these condition (C4) is redundant. Each integral
Cartan matrix gives rise to an associated Kac-Moody Lie algebra, and the Coxeter
group of the matrix is the Weyl group of the Lie algebra.

Every Coxeter group arises from at least one Cartan matrix, the standard one with

cs,t = −2 cos(π/ms,t) .

Given a Cartan matrix and associated representation of W , define the open simplicial
cone

C = {v | 〈αs, v〉 > 0 for all s} .

The primary tie between geometry and the combinatorics of Coxeter groups is that for
any realization of W (1) sw > w if and only if αs > 0 on wC (i.e. wC lies on the same
side of the hyperplane αs = 0 as C); (2) sw < w if and only if αs < 0 on wC (it lies on
the opposite side). There are many consequences of this simple geometric criterion for
whether sw is longer or shorter than w.

The transforms of C by elements of W are called the closed chambers of the realization.
Let C be the union of all these. It is clearly stable under non-negative scalar multiplica-
tion, and it turns out also to be convex. It is often called the Tits cone. The principal
result relating geometry and combinatorics was first proved in complete generality in
Tits (1968):

Theorem. The map taking s to ρs is a faithful representation of W on V . The group
W acts discretely on C, and C is a fundamental domain for W acting on this region. A
subgroup H of W is finite if and only if it stabilizes a point in the interior of C.

For each subset T of S define the open face CT of C to be where αs = 0 for s in T and
αs > 0 for s not in T . Thus C = C∅ is the interior of C, and C is the disjoint union
of the CT . A special case of this concerns faces of codimension one. If s and t are two
elements of S and wC{s} ∩C{t} 6= ∅ then s = t and w = 1 or w = s. As a consequence,
each face of codimension one of a closed chamber is a W -transform of a unique face
of C, and hence each such face can be labelled canonically by an element of S. If two
chambers xC and yC share a face labeled by s then x = ys.

Recall that the Cayley graph of (W, S) is the graph whose nodes are elements w of
W , with a link between w and ws. The Cayley graph is a familiar and useful tool in
combinatorial investigations of any group with generators. The point of looking at the
geometry of the cone C and the chambers of a realization are that they offer a geometric

the electronic journal of combinatorics 9 (2002), #R25 5

image of the Cayley graph of (W, S). This is because of the remark made just above.
If w = s1s2 . . . sn then we can track this expression by a sequence of chambers

C0 = C, C1 = s1C, C2 = s1s2C, . . . , Cn = wC

where each successive pair Ci−1 and Ci share a face labeled by {si}. Such a sequence
is called a gallery. The length of an element w is also the length of a minimal gallery
from C to wC.

Geometrically, if D is the chamber wC then the last element sn of a normal form for w
is that element of S least among those s such that the hyperplane containing the face
Ds separates D from C.

The basic roots associated to a Cartan matrix are the half-spaces αs ≥ 0, and we
obtain the other (geometric) roots as W -transforms of the basic ones. These geometric
roots are distinct but related to the algebraic roots, which are the transforms of the
functions αs themselves. Normally, the geometric roots have more intrinsic significance.
The positive ones are those containing C, the negative ones their complements. It turns
out that all roots are either positive or negative.

For T ⊆ S define WT to be the subgroup of W generated by elements of T . This is itself
a Coxeter group. Every element of W can be factored uniquely as a product xy where
y lies in WT and x has the property that xαt > 0 for all t in T . The set of all such
elements x make up canonical representatives of W/WT , and are called distinguished
with respect to T .

3. An example

Let Ã2 be the Coxeter group associated to the Cartan matrix
 2 −1 −1
−1 2 −1
−1 −1 2

 .

The Coxeter matrix has ms,t = 3 for all s, t. As its Coxeter graph demonstrates, any
permutation of the generators induces an automorphism of the group.

Figure 1. The Coxeter
graph of Ã2.

the electronic journal of combinatorics 9 (2002), #R25 6

In the realization determined by this matrix, introduce coordinates through the roots
αi: v = (x1, x2, x3) if xi = 〈αi, v〉. The chamber C is the positive octant xi > 0. The
vectors α∨

i are
α1 = (2,−1,−1)
α2 = (−1, 2,−1)
α3 = (−1,−1, 2)

which turn out in this case to be linearly dependent—they span the plane x1+x2 +x3 =
0. The reflections ρi leave the plane x1 +x2 +x3 = 1 invariant. This plane contains the
three basis vectors

$1 = (1, 0, 0)
$2 = (0, 1, 0)
$3 = (0, 0, 1)

and we can picture the geometry of the Coxeter group by looking only at this slice, on
which the elements of W act by affine transformations.

Figure 2. A slice through chambers of
Ã2. Edges of chambers are labeled by line
multiplicities.

Figure 3. The Cayley graph of Ã2. Gen-
erators are labeled by color.

This group is in fact the affine Weyl group associated to the root system A2. Below is
shown how a typical gallery in the group is constructed in steps.

the electronic journal of combinatorics 9 (2002), #R25 7

Figure 4. Building the gallery 〈2〉〈1〉〈3〉〈1〉.
And just below here is the InverseShortLex tree for the same group.

Figure 5. The InverseShortLex tree of Ã2, edges
oriented towards greater length. An arrow into an
alcove traverses the wall with the least label sepa-
rating that alcove from C.

the electronic journal of combinatorics 9 (2002), #R25 8

4. The geometric algorithm

One solution to the problem of computing products in W is geometric in nature. For
any vector v in V and simple algebraic root α, let

vα = 〈α, v〉 .

These are effectively coordinates of v. If β is any simple root, then we can compute the
effect of the reflection sβ on these coordinates according to the formula

(sβv)α = 〈α, v − 〈β, v〉β∨〉 = vα − 〈α, β∨〉vβ .

This is quite efficient since only the coefficients for roots α linked to β in the Dynkin
graph will change.

Let ρ be the element of V such that ρα = 1 for all simple roots α. It lies in C, and for
any w in W the vector w−1ρ lies in w−1C. We have ws < w if and only if sw−1 < w−1,
or equivalently if and only if α = 0 separates C from w−1C, or again if

(w−1ρ)α = 〈α, w−1ρ〉 < 0 .

Thus the last generator s in an InverseShortLex expression for w is the least of those
α such that (w−1ρ)α < 0. Since we can calculate all the coordinates (snsn−1...s1ρ)α

inductively by the formulas above, we can then use this idea to calculate the Inverse-
ShortLex form of w. In effect, we are identifying an element w with its vector w−1ρ.

There is a catch, however. The reflections s are not in general expressed in terms of
integers. In the standard representation, for example, the coordinates of a vector w−1ρ
will be sums of roots of unity. For only a very small number of Coxeter groups—those
with all ms,t = 1, 2, 3, 6, or ∞—can we find representations with rational coordinates.
Therefore we can expect the limited precision of real numbers stored in computers to
cause real trouble (no pun intended). It is notoriously difficult, for example, to tell
whether a sum of roots of unity is positive or negative. The method described here
for finding InverseShortLex forms looks in principle, at least, quite unsatisfactory. In
practice, for technical reasons I won’t go into, it works pretty well for finite and affine
Coxeter groups, but it definitely looks untrustworthy for others.

the electronic journal of combinatorics 9 (2002), #R25 9

5. Tits’ algorithm

The first combinatorial method found to derive normal forms of elements of a Coxeter
group is due to Jacques Tits, although he didn’t explicitly use a notion of normal form.
He first defines a partial order among words in S: he says that x → y if a pair ss in x
is deleted, or if one side of a braid relation is replaced by the other, in order to obtain
y. Such a deletion or replacement is called by Tits a simplification. By definition of
a group defined by generators and relations, x and y give rise to the same element of
W if and only if there is a chain of words x1 = x, . . . , xn = y with either xi → xi+1

or xi+1 → xi. Tits’ basic theorem is a strong refinement of this assertion: x and y
give rise to the same element of W if and only if there exist sequences x1 = x, . . . , xm

and y1 = y, . . . , yn = xm such that xi → xi+1 and yi → yi+1 for all i. The point is
that the lengths of words always decreases, whereas a priori one might expect to insert
arbitrary expressions ss. In particular, two reduced words of the same length give rise
to the same element of W if and only if one can deduce one from the other by a chain
of braid relations. As a consequence, if we list all the words one obtains from a given
one by successive simplifications, its InverseShortLex word will be among them. So
one can find it by sorting the subset of all listed words of shortest length according to
InverseShortLex order and picking out the least one.

This algorithm has the definite advantage that it really is purely combinatorial. For
groups where the size of S and the length of w are small, applying it in manual compu-
tation is reasonable, and indeed it may be the only technique practical for hand work.
Implementing it in in a program requires only well known techniques of string processing
to do it as well as could be expected. The principal trick is to apply a fairly standard
algorithm first introduced by Alfred Aho and Margaret Corasick for string recognition.
Even so, this algorithm is not at all practical for finding the InverseShortLex forms
of elements of large length, by hand or machine. The principal reason for this is that
any element of W is likely to have a large number of reduced expressions—even a huge
number—and all of them will be produced. Another major drawback, in comparison
with the algorithm to be explained later on, is that there does not seem to be any good
way to use the calculations for short elements to make more efficient those for long ones.
In finding the InverseShortLex form of an element ws where that for w is known, it
is not obvious how to use what you know about w to work with ws.

One improvement one might hope to make is to restrict to braid relations going from
one word to another which is in InverseShortLex. This would allow a huge reduction
in complexity, certainly. But we cannot make this improvement, as the finite Weyl
group of type A3 already illustrates. The braid relations in this case are

〈2〉〈1〉〈2〉 = 〈1〉〈2〉〈1〉
〈3〉〈2〉〈3〉 = 〈2〉〈3〉〈2〉

〈1〉〈3〉 = 〈3〉〈1〉

the electronic journal of combinatorics 9 (2002), #R25 10

where the terms on the right are in InverseShortLex. The word 〈1〉〈2〉〈3〉 is in In-
verseShortLex, since it has no simplifications. What if we multiply it on the left by
〈3〉 to get

〈3〉〈1〉〈2〉〈3〉 ?

This reduces to its InverseShortLex equivalent through this chain of transformations:

〈3〉〈1〉〈2〉〈3〉 = 〈1〉〈3〉〈2〉〈3〉
〈1〉〈3〉〈2〉〈3〉 = 〈1〉〈2〉〈3〉〈2〉

but the first step is not an InverseShortLex simplification. Nor is there any chain of
InverseShortLex simplification which will carry out the reduction.

6. Reflection in the InverseShortLex tree

Recall that for w in W its InverseShortLex normal form is NF (w). Denote concate-
nation of words by •.

As already suggested, the InverseShortLex language defines a tree whose edges are
labeled by elements of S. Its nodes are the elements of W , and there exists an edge
x

t→ y if y = xt > x and NF (y) = NF (x)•t. Or, equivalently, if y = xt > x and t is
the least element of S such that yt < y. The root of the tree is the identity element of
W , and from the root to any element w of W there exists a unique path whose edges
trace out the InverseShortLex expression for w.

What is the effect of reflection on this tree? In other words, suppose we have an edge
x

t→ y, and that s is an element of S. Under what circumstances is there an edge
sx

t→ sy in the InverseShortLex tree?

Theorem. Suppose that x
t→ y is an edge in the InverseShortLex tree and that s is

an element of S.

(a) If yC does not have a face contained in the reflection hyperplane αs = 0 then there

will also be an edge sx
t→ sy in the InverseShortLex tree.

(b) If yC has a face labeled by u in the reflection hyperplane αs = 0, then there will

exist an edge sx
t→ sy in the InverseShortLex tree except when u ≤ t.

In particular, most edges in the InverseShortLex tree will certainly be preserved under
reflection by s, because relatively few chambers will lie next to the root plane αs = 0.

The theorem’s formulation masks an important dichotomy. In (b), the case where u = t
is that where xC and yC share a face contained in the root plane αs = 0. Reflection by
s simply interchanges xC and yC, or in other words sx = xt. We have what is called
in the theory of Coxeter groups an exchange.

If u < t, let z = sy = yu. Reflection by s transforms yC into zC. In other words, the
edge y

u→ z is an example of the first case. The InverseShortLex edge into zC comes
from yC across the root hyperplane instead of from sx.

the electronic journal of combinatorics 9 (2002), #R25 11

PROOF. Suppose x
t→ y to be an edge in the InverseShortLex tree that disappears

under reflection by t. In other words, t is the least element of S labeling a face of yC
separating it from C, but t is not the least element of S labeling a face of syC separating
it from C.

One of two things can go wrong: (i) The face of syC labeled by t does not separate
syC from C; or (ii) it does separate, but it is not the least. We have to analyze what
happens to the faces of yC separating it from C upon reflection by s.

If F is a face of yC separating yC from C, then sF is a face of syC separating syC
from sC. The union of C and sC is a convex set, and its two components are separated
by the single face where αs = 0. Therefore the faces separating syC from C will be the
same as the reflections of those separating yC from C, except where yC and syC have
a common face in αs = 0. If sy > y and yC has a face in αs = 0, then yC and syC will
share a face which also separates syC from C.

Therefore in case (i) above sy < y. Furthermore, even in this case only one separating
face disappears under reflection by s, and that is the one in αs = 0—the face of syC
labeled by t must be that lying in αs = 0. In this case, therefore, xC lies on the positive
side of αs = 0 and yC lies on the other, and their common face lies in the root plane
αs = 0.

Figure 6a. If yC does not lie next to the
reflection hyperplane, then the faces sep-
arating syC from C are the images under
s of those separating yC from C.

Figure 6b. If a face of yC does lie in
the reflection hyperplane, then its ISL link
may be affected under reflection.

Suppose that the face labeled by t of syC does separate syC from C, but that it is not
least. Let the face which is least be labeled by u < t. If the face labeled by u also
separated yC from C then the edge x

t→ y would not be in the InverseShortLex tree.

the electronic journal of combinatorics 9 (2002), #R25 12

Therefore this does not happen. By the same reasoning as in the previous paragraph,
this means that the face labeled by u lies in the root plane αs = 0.

A simple analysis will show that all possible cases where reflection does not preserve an
edge arise from one of two basic configurations: (i) The case x = 1. No edges leading
out from C itself are preserved under reflection by any t in S. (ii) We have a succession
of edges x

t→ y and y
u→ z where u < t, and the face of yC labeled by u crosses from one

side of αs = 0 to the other. In this second case, neither of the two edges is preserved
under reflection by s. In the second case the node y is called an exchange node for s in
the InverseShortLex tree. To deal with both cases uniformly, we also call the identity
element of W an exchange node. The terminology comes from the fact that if y is an
exchange node then sy = yu—i.e. s and u are exchanged.

Thus y is an exchange node for s if y = 1 or if NF (y) = s1 . . . sn and NF (sy) = NF (y)•t
with t < sn. I will call t the exchange token. The exchange node y will be called
primitive if there is no other exchange node among the yi = s1 . . . si with i < n. This
means that all the expressions ss1 . . . sm are in normal form for m < n.

Figure 7. Some of the exchange nodes for
reflection by 〈1〉 in Ã2. Links modified
under reflection are colored. The funda-
mental chamber is at the bottom.

This theorem has immediate consequences for calculating the normal form of sx, given
the normal form of x.

Theorem (InverseShortLex exchange). Suppose x to have the normal form x =
s1 . . . sn and let xi = s1 . . . si for each i. Suppose that xm is the last exchange node for
s among the xi, with exchange token t. Then

NF (sx) =
{

s1s2 . . . smsm+2 . . . sn if t = sm+1

s1s2 . . . smtsm+1sm+2 . . . sn otherwise

the electronic journal of combinatorics 9 (2002), #R25 13

PROOF. Since sxm = xmt and in the first case tsm+1 = 1, the products on left and right
are identical in the group. It remains to see that they are in InverseShortLex, or that
each symbol in one of the strings corresponds to an edge in the InverseShortLex tree.
There is no problem for the initial segment s1 . . . sm.

When t = sm+1, sxm = xm+1 and the chain

xm
sm+2−→ sxm+2

sm+3−→ sxm+3 . . .

is the reflection under s of the InverseShortLex chain

xm+1
sm+2−→ xm+2

sm+3−→ xm+3 . . .

There are no exchange nodes here since all terms in the first chain lie in αs < 0. So
InverseShortLex edges are preserved.

When t 6= sm+1, there is certainly an edge from xm to xm+1t in the InverseShortLex
tree, by definition of t. The rest of the chain is the reflection under t of the chain

xm
sm+1−→ xm+1 . . .

and since there are no exchange nodes here by choice of xm, InverseShortLex links are
again preserved.

One simple consequence of the theorem is this, equivalent to Proposition 3.4 of Brink
and Howlett (1993):

Corollary. If sw > w, then the normal form of sw is obtained from that of w by insertion
of a single element of S. If sw < w, then the normal form of sw is obtained from that
of w by deletion of a single element.

Thus the theorem itself is an explicit version of the familiar exchange lemma for Coxeter
groups.

A few examples are illustrated in the following figures, which ought to explain the proof
better than words can do:

Figure 8a. The element
w = 〈3〉〈1〉〈2〉.

Figure 8b. The element
〈1〉w = 〈1〉〈3〉〈1〉〈2〉.

the electronic journal of combinatorics 9 (2002), #R25 14

Figure 9a. The element
w = 〈3〉〈1〉〈2〉〈3〉〈1〉.

Figure 9b. The element
〈1〉w = 〈3〉〈1〉〈2〉〈3〉〈2〉〈1〉.

Figure 10a. The element
w = 〈3〉〈1〉〈2〉〈3〉〈1〉〈2〉〈3〉〈2〉.

Figure 10b. The element
〈1〉w = 〈3〉〈1〉〈2〉〈3〉〈1〉〈2〉〈1〉〈3〉〈2〉.

We can carry out this process in a slightly simplified fashion. We do not have to figure
out ahead of time what the last exchange node in NF (x) is, but recognize exchange
nodes as we go along, each time carrying out the exchange and starting over again with
the remaining terminal string in x.

Theorem. If x has normal form s1s2 . . . sn and xm = s1 . . . sm is an exchange node for
s with exchange token t, then NF (sx) = s1 . . . smNF (ty) where y = sm+1 . . . sn.

This is immediate from the previous result.

Given this result, we must now ask: How do we tell when we have a primitive exchange
node y? If we have one, how do we compute the exchange token?

One simple criterion relies on the coset factorization W = WT ×WT when T is a subset
of S. If we take T to be one of the subsets Tm = [m, r] (r is the rank of W), then this
factorization is compatible with InverseShortLex:

Proposition. If w = xy with x in WTm and y in WTm
then NF (w) = NF (x)•NF (y).

the electronic journal of combinatorics 9 (2002), #R25 15

PROOF. Recall that in these circumstances `(w) = `(x)+`(y). The proof is by induction
on `(y).

This factorization extends to give

W = W [r]
r × . . .W

[1]
1

where W
[m]
m is the subset of the elements w in the group generated by the first m

elements of S whose InverseShortLex word ends in m. If w lies in W
[m]
m for some m I

call it from now on distinguished. This means that NF (w) = s1 . . . sn with sn ≥ si for
all i.

Lemma. Suppose y to be distinguished, NF (y) = s1 . . . sn, and s in S. Exactly one of
these holds:

(a) sy > y and NF (sy) is obtained from NF (y) by insertion somewhere before sn;

(b) sy > y and NF (sy) = NF (y)•t with t < sn;

(c) y = s and sy = 1;

(d) sy < y and NF (sy) is obtained from NF (y) by a deletion before sn.

PROOF. If sy > y then NF (sy) is obtained from NF (y) by insertion. It has to be
shown that if the insertion puts t at the end then t < sn. This is clear from the
InverseShortLex exchange theorem. Similarly, if sy < y then NF (sy) is obtained
from NF (y) by deletion. In this case it has to be shown that either y = s or the
deletion does not take place at the end. But if the deletion takes place at the end and
y 6= s then

ss1 . . . sn = s1 . . . sn−1, ss1 . . . sn−1 = s1 . . . sn = y

which contradicts the hypothesis that sn is the least s in S such that sy < y.

Lemma. If w 6= 1 is a primitive exchange node for s and NF (w) = s1 . . . sn, then
sn ≥ si for all i and sn ≥ s.

PROOF. Suppose w 6= 1 with normal form s1 . . . sn is a primitive exchange node for
s0 = s. This means that (i) s0s1 . . . sn−1 is in normal form; (ii) NF (s0w) = NF (w)•t
with t < sn. It is to be shown that sn ≥ si for all i.

If not, suppose that sn < si for some i, so that the maximum element occurs somewhere
than at the right end. Let sm to be the last occurrence of the maximum, with m < n,
so that sm > sk for all k > m. The element x = s0s1 . . . sm is in normal form, because
s0s1 . . . sn−1 is assumed to be in normal form, and similarly y = sm+1 . . . sn is in normal
form since s1 . . . sn is assumed to be in normal form. But the element s0w has the coset
decomposition

s0w = xy, NF (x) = s0s1 . . . sm, y = sm+1 . . . sn .

Then NF (w) = NF (x)•NF (y), contradicting that the normal form of sw is wt.

the electronic journal of combinatorics 9 (2002), #R25 16

7. du Cloux’s trick

So now we are reduced to the following problem: We are given w = s1s2 . . . sn in
normal form, we know that ss1 . . . sn−1 is also in normal form, and we want to compute
NF (sw). We also know that sn is maximal among s and the si. There are only two
possibilities: • sw is already in normal form, or • sw = wt with t less than the terminal
element in w. We must decide which, and in the second case we must determine t.

We can do what we want to easily enough in two very special cases: • we have s = s1 =
w, or • we have s = s2 and sw is one half of a braid relation s2s1s2 . . . where the other
half is in InverseShortLex form. These we can handle easily. In the first case, we can
even stop all further work; cancelling ss gives us exactly the InverseShortLex form we
are looking for. From now on, we shall assume we are not dealing with either of these
two cases. In particular, we may assume that n ≥ 2.

This is exactly where a marvelous trick due to du Cloux (Lemma 3.1 of du Cloux
(1999), explained in a more leisurely fashion in §3 of the unpublished note du Cloux
(1990)) comes in. du Cloux’s remarkable idea is that we can tell what happens by
finding the InverseShortLex form of s1ss1s2 . . . sn−1. On the face of it, this is just as
difficult as the problem of finding NF (ss1 . . . sn). But in fact either the new maximum
element in this string occurs before sn−1, in which case because of coset factorization
we have broken our problem into one involving two smaller expressions, or sn−1 is the
new maximum, in which case we have decreased the maximum without lengthening the
expression involved. In either case, we are led by recursion to a strictly simpler problem.

So let y = s1s2 . . . sn−1. Calculate the normal form of

s1sy = s1ss1s2 . . . sn−1 .

There are a couple of possible outcomes:

(1) s1sy < sy. We can calculate s1sysn = s1sx by recursion, since the length of s1sy is
that of y, one less than that of x. It turns out that sx is distinguished if and only if s1sx
is. For if sx is distinguished then by a Proposition above so is s1sx since s1sx < sx as
well. And if sx is not distinguished, then

sx = xt

s1sx = s1xt

= s1s1s2 . . . sn−1snt

= s2 . . . snt

is not distinguished. Furthermore, we can find the t we are looking for by calculating
s1sx.

the electronic journal of combinatorics 9 (2002), #R25 17

(2) s1sy > sy. In this case, either (a) sx is distinguished or (b) we are looking at
a braid relation in a rank two group. For say s1ss1 . . . sn−1 is reduced but sx is not
distinguished. Then sx = xt and hence

s1ss1 . . . sn−1sn = s1s1 . . . sn−1snt = s2 . . . snt .

On the other hand, s1ss1s2 . . . sn−1 is reduced but s1ss1 . . . sn−1sn is not, which means
that we must have a deletion when we multiply s1ss1s2 . . . sn−1 on the right by sn.
Since ss1 . . . sn is reduced, the only exchange possible is with the first s1:

s1ss1s2 . . . sn−1sn = ss1s2 . . . sn−1 .

For the one element we now have two expressions:

s1ss1s2 . . . sn−1sn = ss1s2 . . . sn−1 = s2 . . . snt

Both are normal forms. But since normal forms are unique, these must match element
by element: s = s2, s1 = s3, etc.

It is instructive to see how du Cloux’s procedure works out in the example we looked at
in examining Tits’ algorithm. We want to find sw where s = 〈3〉 and w = 〈1〉〈2〉〈3〉. We
read from left to right in w: getting normal forms 〈3〉〈1〉 and 〈3〉〈1〉〈2〉 before arriving at
w itself, which is a possible primitive exchange node for s. Applying du Cloux’s trick,
we have to calculate first the normal form of 〈1〉〈3〉〈1〉〈2〉. We apply a braid relation
exchange 〈1〉〈3〉 = 〈3〉〈1〉 to get 〈3〉〈1〉〈1〉〈2〉 = 〈3〉〈2〉 for this. Then we calculate the
normal form of 〈3〉〈2〉〈3〉, getting an exchange to 〈2〉〈3〉〈2〉. We read off t = 〈2〉, then
sw = wt with t = 〈2〉.

8. The full algorithm

There are three basic function procedures, linked by a somewhat intricate recursion:

• NF(x,y). Here x and y are arrays of elements of S, and y is assumed to be in
normal form. The return value is the array of the full product in normal form.

• NF(s,w). Here s is a single generator, and again y is an array in normal form. The
return value is the normal form of the product.

• Exchange(s,w). Here s is a single generator,

w = (s1, s2, . . . , sn)

an array in normal form, and it is assumed that ss1 . . . sn−1 is also in normal form.
The return value is either a new dummy generator, say 〈0〉, if the normal form of
sw is ss1 . . . sn, or otherwise the generator t such that NF (sw) = w•t.

In more detail:

the electronic journal of combinatorics 9 (2002), #R25 18

• NF(x,y)

Suppose x = (s1, . . . , sn). Recall that y is in normal form. For i = n, . . . , 1 let

y := NF (si, y)

Then return the final value of y.

• NF(s,w)

The rough idea here is that we scan left to right for possible primitive exchange nodes,
and when we find them we call Exchange(s,w), which for the most part carries out du
Cloux’s calculations. Depending on the outcome, we either continue on or restart the
scan with new data.

As we scan we keep track of the current left-hand end ` of what possible exchange
we are dealing with; the index of the current element r to be scanned; the current
maximum element σ; and the current value of s. At each entry to the principal loop:
1 ≤ ` ≤ r ≤ n; NF (sw) = s1 . . . s`−1NF (ss` . . . sn); σ is the maximum of s and the si

with ` ≤ i < r;

NF (ss1 . . . sr−1) = [s1, . . . , s`−1, s, s`, . . . , sr−1] ;

and we are in the process of finding NF (ss` . . . sr). Start off by setting σ = s, ` = r = 1.

While r ≤ n:
Let c = sr and increment r.
If c < σ just re-enter the loop.
Otherwise c ≥ σ and we are at a possible primitive exchange node. Set σ = c.
Let t be the return value of Exchange(s, [s`, . . . , sr−1]).
If t = 〈0〉 (the dummy generator), there was no exchange. Reenter the loop.
Else there are two possibilities, a deletion or an exchange.
If s = s`, there is a deletion at s`. Return immediately with

NF (sw) = [s1, . . . , s`−1, s`+1, . . . , sn] .

Otherwise, there is an exchange. Set s = t, ` = r, σ = t, and re-enter the loop.

After exiting from the loop, we return

NF (sw) = s1 . . . s`−1ss` . . . sr−1 .

• Exchange(s,w)

Here w is given in normal form w = s1 . . . sn with n > 0, ss1 . . . sn−1 is in normal form,
and sn ≥ s, all si. There are three distinct cases:

(i) If `(w) = 1 and s1 = s, this is an exchange. Return s.

the electronic journal of combinatorics 9 (2002), #R25 19

(ii) If s and w lie in a subgroup with two generators from S and sw is the left hand side
of a braid relation sw = wt with the right hand side in InverseShortLex, this also is
an exchange. Return t.

(iii) Otherwise, let y = ss1 . . . sn−1 and find NF(s1, y) (a recursive call). (a) If s1y < y,
then its normal form is obtained by a deletion from that of y. Say s1y = s . . . ŝm . . . sn−1.
We can calculate the normal form of s1ysn by a recursion call to find

NF([s1, s, s1, . . . , sm−1], [sm+1, . . . , sn]) .

If this is distinguished then so is sw. If it is not, and s1ysn = zt with t < sn, then
we have an exchange sw = wt. (b) If s1y > y then sw is distinguished—there is no
exchange.

In any practical implementation of these, it will be efficient to keep a registry of ex-
changes and potential exchanges, starting with the braid relations and building the rest
of the registry as calculations proceed.

9. The minimal roots of Brink and Howlett

du Cloux’s idea is clever, but the recursion involved in it means it is not likely to be
efficient. It would be good if there were some other, more efficient way, to recognize
primitive exchanges. Ideally, we would read the normal form of w from left to right,
adjusting something as we go, and recognize without recalculation when we arrive at a
primitive exchange node. In fact, there is such a procedure. It involves the notion of
minimal root of Brink and Howlett (1993).

A minimal root is a positive root (half-space) which does not contain the intersection of C
and another positive root—in the terminology of Brink and Howlett does not dominate
another positive root. It corresponds to a root hyperplane which is not walled off in
C from C by another root hyperplane. For finite Coxeter groups all root hyperplanes
intersect in the origin, there is no dominance, and all positive roots are minimal. For
affine Weyl groups, the minimal roots are the positive roots in the corresponding finite
root system, together with the −λ + 1 where λ is positive in the finite root system.
For other Coxeter groups, they are more interesting, less well understood, and probably
more important. The principal theorem of Brink and Howlett, and in my opinion one of
the most remarkable facts about general Coxeter groups, is that the number of minimal
roots is finite. That this has not been applied much, for example to the theory of Kac-
Moody algebras, just shows how little we know about general Kac-Moody algebras. In
addition, Brink and Howlett proved that if λ is a minimal root and s an element of S,
then exactly one of these is true: (i) λ = αs and sλ < 0; (ii) sλ dominates αs; (iii) sλ
is again a minimal root. I interpret this by introducing the extended set of minimal
roots, the usual ones together with ⊕ and 	. I define the minimal root reflection table
to be that which tabulates the sλ for λ an extended minimal root (setting sλ = 	 in
case (i), sλ = ⊕ in case (iii)). We incorporate also the simple rules s	 = 	, s⊕ = ⊕.

the electronic journal of combinatorics 9 (2002), #R25 20

This minimal root reflection table is one of the most important tools for computational
work with Coxeter groups.

For a distinguished w = s1 . . . sn primitive with respect to s we can calculate w−1αs

from the table. The element w will be an exchange node if and only if w−1αs = αu

with u < sn, and the exchange token will be u. This is explained in Casselman (1994).

Of course we can calculate w−1αs as we read the InverseShortLex expression for w
from left to right, since (wisi+1)−1αs = si+1w

−1
i αs. Therefore, in order to calculate

products efficiently, we want to calculate the minimal root reflection table. This involves
constructing a list of all minimal roots, and calculating the effect of reflections on them.
The algorithm I now use pretty much follows that devised first by Howlett, and explained
in more detail in Casselman (1994). There is an important difference, however: in the
earlier routine, floating point numbers were used to check an inequality involving real
roots, in order to decide when dominance occurred. In my current programs, I check
dominance by checking whether a certain element in the Coxeter group has finite order
or not. In doing this, products are calculated using the algorithm described earlier. The
lengths of the elements encountered are quite large, and it is perhaps surprising that
du Cloux’s recursion is indeed practical enough to allow that check. In other words,
although it is not good enough to carry out serious calculations on its own, it is good
enough to bootstrap itself up to a more efficient algorithm. For crystallographic groups
one can also legitimately use exact integer arithmetic and the geometric algorithm to
construct the minimal root reflection table. It is interesting to see that the general
method, even on large groups like Ẽ8, is only about 10 times slower.

I thought of putting in a table of program run times for various systems, but it would
be hardly worth it—even for quite large groups like the affine E8, it takes less than a
second or two to build the minimal root table. The toughest group I have looked at so
far is that with Coxeter graph

5 3 3 5

With this group, construction of the minimal root table encounters about 20,000 ex-
change nodes. In my programs these are all registered in a dictionary as they are found,
for subsequent look-up. This takes up a lot of space, and in finding a practical imple-
mentation that would deal with this particular group I had to sacrifice a small amount
of speed. The number of minimal roots for this group, incidentally, is 135, and on one
machine takes 2.3 seconds to construct the minimal root reflection table. By compari-
son, the group affine E8 has 240 minimal roots, encounters about 1,000 exchange nodes,
and on the same machine takes 0.3 seconds. In practice, the group ‘5335’ marks a kind
of frontier. Although one can manage to construct lots of interesting structures for
it, doing really interesting computations, for example of non-trivial Kazhdan-Lusztig
polynomials, seems to be definitely beyond present capability.

the electronic journal of combinatorics 9 (2002), #R25 21

10. References

1. A. Aho and M. Corasick, ‘Efficient string matching: an aid to bibliographic research’,
Comm. ACM 18 (1975), 333–340.

2. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullmann, Compilers—Principles, Tech-
niques, and Tools, Addison-Wesley, 1986.

3. N. Bourbaki, Groupes et algèbres de Lie, Chapitres 4,5, et 6, Hermann, Paris, 1968.

4. Brigitte Brink and Robert Howlett, ‘A finiteness property and an automatic structure
for Coxeter groups’, Math. Ann. 296 (1993), 179–190.

5. W. Casselman, ‘Automata to perform basic calculations in Coxeter groups’, in
Representations of groups, CMS Conference Proceedings 16, A.M.S., 1994.

6. W. Casselman, ‘Multiplication in Coxeter groups—applet and source code’, at
http://www.math.ubc.ca/people/faculty/cass/java/coxeter/multiplication

7. Fokko du Cloux, ‘Un algorithme de forme normale pour les groupes de Coxeter’,
preprint, Centre de Mathématiques à l’École Polytechnique, 1990.

8. Fokko du Cloux, ‘A transducer approach to Coxeter groups’, J. Symb. Computation
27 (1999), 311–324.

9. Robert Howlett, ‘Introduction to Coxeter groups’, preprint, 1997. Available from
the web site

http://www.maths.usyd.edu.au

of the Mathematics and Statistics Department at the University of Sydney, N.S.W.

10. James E. Humphreys, Reflection groups and Coxeter groups, Cambridge University
Press, 1990.

11. D. E. Knuth, ‘On the translation of languages from left to right’, Information and
Control 8:6 (1965), 607–639.

12. J. Tits, ‘Le problème des mots dans les groupes de Coxeter’, Symposia Math. 1
(1968), 175–185.

13. E. Vinberg, ‘Discrete linear groups generated by reflections’, Mathematics of the
USSR—Izvestia 5 (1971), 1083–1119.

the electronic journal of combinatorics 9 (2002), #R25 22

