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Abstract

We review the various ways that stacks, their variations and their combinations,
have been used as sorting devices. In particular, we show that they have been a
key motivator for the study of permutation patterns. We also show that they have
connections to other areas in combinatorics such as Young tableau, planar graph
theory, and simplicial complexes.

1 Introduction

The stack sorting problem introduced by Knuth [29] in the 1960’s was a founding inspi-
ration in the study of permutation patterns. Simultaneously it introduced the notion of
pattern containment, defining a class of permutations by a forbidden set, and the enu-
meration of permutations in such classes. Soon afterwards various generalizations by
Tarjan [36], Pratt [33], and Even and Itai [24] were studied and these authors posed
questions about permutation patterns which even today cannot be easily answered. But,
from around 1973 through to 1992 when Herbert Wilf delivered an influential address
to the SIAM meeting on Discrete Mathematics, these questions lay almost untouched.
The 1990’s and the new millenium saw a renaissance of permutation pattern research and
stack sorting problems returned as one of its main drivers. In this survey we shall review
both the early work and more recent work on stack sorting. We shall see that it touches
on many areas of combinatorics and remains a fascinating source of open problems.
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A stack is a last-in, first-out linear sequence accessed at one end called the top. Items are
added and removed from the top end by push and pop operations. In its simplest form
a stack is used to rearrange a permutation p = p1, p2, . . . , pn as follows. The elements
of p are pushed onto an initially empty stack and an output permutation is formed by
popping elements from the stack. The output permutation obviously depends on how the
push and pop operations are interleaved.

In the simplest stack sorting problem one wishes the output permutation to be 1, 2, . . . , n
(so that one has sorted the input). A necessary but not sufficient condition for this to
be possible is that the stack values should always be increasing (read from the top end).
Enforcing this condition leads to a “greedy algorithm” that only pops a stack symbol if
pushing the next input symbol would have violated the increasing property of the stack.
We let s(p) be the output resulting from this greedy algorithm.

Example 1.1 Let p = 2413. Then the stages of the greedy sorting procedure are shown
in Figure 1.

      INPUT                                          STACK                                    OUTPUT
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Figure 1: Sorting 2413

There is an alternative, recursive definition of the function s(p). The following Lemma
makes this evident.

Lemma 1.2 Let p = LnR be an n-permutation, where L denotes the string on the left of
the entry n, and R denotes the string on the right of the entry n. Then we have

s(p) = s(L)s(R)n.

Proof: The entry n can enter the stack only when it is empty, that is, when L has passed
through the stack. Once n is in the stack, it will stay there until the end, so R will past
through the stack after L. 3

The following result of Knuth [29] originated the study of stack sorting.
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Proposition 1.3 A permutation p can be sorted by a stack if and only if s(p) is the
identity permutation and this happens if and only if p avoids the pattern 231. The number
of such sortable permutations of length n is Cn =

(
2n
n

)
/(n + 1).

The remainder of this paper surveys various ways in which Proposition 1.3 has been
generalized and refined. The generalizations have been of two kinds. In the first (discussed
in section 2) we replace the stack by a linear sequence with more complex accessing rules
and in the second (section 3) we use several stacks connected together in various ways. For
all of these generalizations there is an enumeration question: how many n-permutations
can be sorted by the system. For most of them the set of sortable permutations is closed
under forming subpermutations and so there is the question of finding the minimal set of
unsortable permutations; the set of sortable permutations is then characterized as those
permutations which avoid this minimal set. As we shall see, there is one problem where
the sortable set is not closed under subpermutations and that gives rise to a number of
rather different considerations. The main refinement we consider is enumeration by length
and number of descents (section 4). Here detailed information is rather patchy but for
one class of stack-sortable permutations at least there are some encouraging beginnings
and intriguing connections with planar graph theory.

2 Variations on a single stack

The first generalizations of the ordinary stack appeared a few pages later in [29] than the
proof of Proposition 1.3. An input-restricted deque is like a stack in that it has a push
operation but the pop operation can remove an element from either end of the sequence.
By an ingenious argument that subsequently grew into what we nowadays call the kernel
method Knuth proved

Proposition 2.1 A permutation can be sorted by an input-restricted deque if and only if it
has no subpermutation of the form 4231 or 3241. The numbers of sortable n-permutations
are given by the Schröder numbers sn whose generating function is

∞∑
n=0

snxn =
3 − x −√

1 − 6x + x2

2

Knuth also posed the problem of sorting using a (general) deque where one can push and
pop at either end. It was proved by Pratt [33] that the deque sortable permutations are
characterized by avoiding a certain infinite set A of permutations. The set A was the first
published example of an infinite antichain in the pattern containment order. However,
the enumeration question for deques remains completely unsolved.

Of course deques (input-restricted or not) are more powerful than stacks in that they sort
a wider collection of permutations than stacks. In [8] Avis and Newborn defined a weaker
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structure that they called a pop-stack (of which more in section 3). The permutations
that a pop-stack can sort are exactly the layered permutations of [10]; their characterizing
unsortable set is {231, 312} and they are enumerated by the function 2n−1.

A family of more general stack-like structures was defined by Atkinson [4]. In an (r, s)-
stack one is allowed to push into any of the first r positions and pop from any of the
s positions at the top end of the stack. Of course, an ordinary stack corresponds to
r = s = 1. For all of the cases r = 1, s = 1, and r = s = 2 the characterizing unsortable
set is known and is finite. The (r, 1)-stack-sortable permutations (and the (1, s)-stack
sortable permutations) have been enumerated in that their ordinary generating functions
are known. It happens that the (2, 1)- stack sortable permutations are enumerated by the
Schöder numbers although there is no symmetry that maps the problem directly to an
input-restricted deque problem.

Another family of stack-like structures was defined by Albert and Atkinson in [1]. An
(r, s) fork-stack has a push operation that can transfer a contiguous block of at most r
symbols from the input to the stack and a pop operation that can transfer a block of at
most s symbols from the stack to the output. For all values of r and s it is known that
there are only finitely many minimal unsortable permutations (even if either parameter
is infinite). Very strong conditions are known on the generating functions in most cases.
Except for the case r = s = ∞ the generating function is algebraic and it is known
explicitly when either r = 1 or s = 1 or r = s = 2.

Finally in this section we note that all these problems have variations where one restricts
the size of the stack structure. As part of a much more general investigation of bounded
structures Atkinson, Livesey, and Tulley [3] solved the minimal unsortable permutation
problem and the enumeration problem for ordinary stacks that are not allowed to contain
more than some fixed number of symbols. It turns out that the corresponding generating
functions are rational (unlike the Catalan generating function associated with unbounded
stacks).

3 Systems of stacks

Again it was Knuth in [29] who first posed questions about systems of stacks (using the
language of railway sidings). His ideas were taken up by Tarjan [36] who defined a very
general model. In Tarjan’s model one has a graph whose nodes are stacks (or queues). If
two stacks are connected by an edge from A to B then items popped from stack A are
pushed onto stack B. In this generality virtually nothing can be proved but there are two
special cases that have attracted several researchers over many years.

The first special case is of stacks S1, S2, . . . , St in parallel. At any point in the sorting
process we may push the next input symbol onto one of the stacks or we may pop one
of the stacks and thereby create another symbol of the output permutation. Nothing is
known about the enumeration of the sortable permutations (except, of course, if t = 1),

the electronic journal of combinatorics 9(2) (2003), #A1 4



although the methods of [3] apply if there is a bound on the size of the stacks. However,
for t = 1, 2, 3, there is at least an efficient algorithm (complexity O(n logn)) to decide
whether a permutation is sortable. The algorithm stems from a reduction by Even and
Itai [24] to a graph-coloring problem and a solution to this coloring problem by Unger
[38]. It is also known [33] that the set of minimal unsortable permutations is infinite if
t ≥ 2 (and this remains true even for two stacks of size 2 in parallel [3]). The situation
is simpler for a system of pop-stacks in parallel; here there is always a finite number only
of minimal unsortable permutations (and the enumeration problem has been solved when
t = 2 [5]).

Rather more work has been done on stacks S1, S2, . . . , St in series. Here we seek to
sort a permutation by pushing its symbols onto S1, popping them off S1 and on to S2,
transferring them from S2 and pushing them on to S3, etc., until they emerge from St to
become new output symbols.

If no further conditions apply we call this sorting model General stacks in series. The
earliest result was proved in [29]: every n-permutation can be sorted by log2 n stacks in
series. It is not difficult to see that the sortable permutations are exactly those that can
be expressed as a composition π1π2 . . . πt where each factor is a permutation that can be
sorted by a single stack. Therefore the number of permutations that t stacks in series
can sort is at most O(4tn). Unfortunately, the same permutation can be expressed as a
composition in many different ways so this bound is probably not tight.

There is another method for finding upper bounds on the number of sortable permutations
that was first suggested in [2] and later, in a different context, in [27]. We describe the
process whereby the permutation p is sorted using words from an alphabet A1, A2, . . . At+1.
The letter Ai denotes the operation of moving a symbol from the (i−1)th stack to the ith
stack (where i = 1 and i = t + 1 correspond to moves onto the first stack from the input
and moves from the last stack to the output). Since every symbol undergoes t + 1 moves
these words have length n(t + 1) and each letter occurs exactly n times. Not every word
of this form is possible since a stack can only be popped if it is non-empty and, in fact,
these stack words are in one-to-one correspondence with (t + 1)× n rectangular standard
Young tableau so they may be enumerated by the hook formula. This tells us that the
number of stack words is

(tn + n)!2!3! · · · t!
n!(n + 1)! · · · (n + t)!

(1)

Example 3.1 Let p = 132. Then the stages of our sorting procedure are shown on Figure
2. This shows that the stack word associated to p is A1A1A1A1A3A1A3A2A3.

In its raw form this method gives worse upper bounds than the one above but in at least
one case [6] it has been refined to give an accurate result. In general, however, there are
very many operation sequences that sort the same permutation and no way of choosing
a canonical sequence of operations is known. In particular, even for t = 2 no efficient
algorithm is known to decide whether a permutation is sortable and it is possible that
this decision problem is NP-complete.
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INPUT FIRST STACK SECOND STACK OUTPUT

132                                      

32 1

32 1

2 3 1

23 1

123

3 2 1

3 12

3 12

123

Figure 2: Sorting 132 with two serial stacks

The minimal unsortable permutations also present great difficulties. For t = 2 Murphy
[32] has proved that there an infinite number of them but the actual set is unknown (its
smallest permutations are of length 7).

To make further progress on systems of stacks connected in series we have to impose
further conditions. Atkinson, Murphy, and Ruskuc [6] considered stacks in series where
each stack is constrained to have increasing values from the top. We shall call this model
Increasing stacks in series. For the case t = 2 it is known that there are an infinite number
of characterizing minimal unsortable permutations and the enumeration problem has been
solved. Surprisingly, the number of sortable n-permutations is equal to the number that
avoid the permutation 1342 (enumerated in [9]). Both [6] and [9] rely on the enumeration
of a combinatorial structure called a β(0, 1)-tree.

There is a widely studied and even more restricted model that we shall call Greedy in-
creasing stacks in series. In this model there is a rule that determines which push or
pop operation must be carried out at each step. We examine the stacks in the order
S1, S2, . . . , St and locate the first stack on which a push can be applied (and would keep
the stack in increasing order); if there is no such stack then stack St is popped to produce
a new output symbol. It is easy to verify that a permutation p is sortable in this model
if and only if st(p) = 12 · · ·n. It is then clear by Lemma 1.2 that all n-permutations
are (n − 1)-stack sortable in this model. The greedy increasing model was introduced by
Julian West [39] who defined the sortable permutations by the equation st(p) = 12 · · ·n.
At that time the problem had not been recognized as having a wider context and so, in
the literature, the sortable permutations are often referred to simply as t-stack sortable
permutations but, for clarity, we shall call them West-t-sortable permutations. We let
Wt(n) denote the number of West-t-sortable n-permutations.

These classes of permutations differ from all the above classes in not being closed under
subpermutations and this is a major reason why they are hard to handle. For example
35241 is West-2-sortable but its subpermutation 3241 is not.
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West [39] conjectured the following theorem.

Theorem 3.2 For all n, we have

W2(n) =
2(3n)!

(n + 1)!(2n + 1)!
.

This conjecture was open for five years. Then it was solved by D. Zeilberger [40], who
used a computer to find the solution to a degree-9 functional equation. Two other proofs
[22, 26] have been found later; both show fairly complicated bijections between the set
of 2-stack sortable permutations of length n and nonseparable rooted planar maps on
n + 1 edges. The latter have been enumerated by Tutte in 1963 [37]. Finally, a simpler
(but not simple) proof has been found [21] that constructs a bijection between two-stack
sortable permutations, and a certain class of labeled trees called β(1, 0)-trees. As their
name suggests β(1, 0)-trees are similar to the β(0, 1)-trees that play an important role
in the enumeration of sortable permutations in the increasing stacks in series model. It
would be interesting to have a unified treatment of these enumerations.

There are no exact formulae known for Wt(n) if t > 2. Good upper bounds are not known
either. The best estimate we can get uses the following Lemma of West [39], and a recent
result of West and Stankova [34].

Lemma 3.3 If a permutation p contains qk = 234 · · ·k1 as a pattern, then p is not
West-(k − 2)-stack sortable.

Proof: Induction on k. If p contains qk, then s(p) contains qk−1, and our claim follows.
3

Theorem 3.4 For all n and t, we have Wt(n) < (t + 1)2n.

Proof: By Lemma 3.3, all West-t-stack sortable permutations have to avoid 23 · · · (t+2)1.
We know [34] that the number of n-permutations avoiding 234 · · ·k1 is less than (t+1)2n,
so the statement follows. 3

This bound is not sharp, unless t = 1. Even for t = 2, the sequence n
√

W2(n) converges
to 6.75 by the formula given in Theorem 3.2, which is significantly less than the 9n that
we obtain using Theorem 3.4.

This leads us to an interesting area of research. While an exact formula is known for
W2(t), none of the several known proofs shows in a clear way why W2(t) <

(
3n
n

)
. That is,

it would be revealing to find an injection from the set of 2-stack sortable n-permutations
into that of n-element subsets of a 3n-element set. Such an injection could possibly provide
us with insight for cases of larger t. It has to be said, however, that while for t = 1 and
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t = 2, the value of Wt(n) was given by
(
(t+1)n

n

)
/pt(n), where pt(n) was a polynomial,

numerical evidence computed by West in [39] did not support this trend for t = 3. It is
an intriguing question to see why, and whether the numbers W3(t) are smaller or larger
than

(
4n
n

)
divided by some polynomial.

The hook formula (equation 1) hints that the expression
(
(t+1)n

n

)
might indeed be relevant.

For greedy increasing stacks in series every sortable permutation is associated with a
unique stack word. But the difficulty now is that not every stack word corresponds to
a greedy stack sorting process. While it is not difficult to find necessary conditions for
stack words coming from t-stack sortable permutations, it is much more difficult to find
sufficient conditions. This is because for that, we would need a characterization of the
permutations that can be the image of st. The only results in this direction are due to
M. Bousquet-Melou [16], are recursive, and are for the special case of t = 1.

Finally, we mention a classic result originally due to Kreweras [30] that at first sight looks
completely unrelated.

Theorem 3.5 The number of lattice paths starting at (0, 0), ending in (i, 0), and using
3n + 2i steps, each of which is equal to either (1, 1), or (0,−1), or (−1, 0), and never
leaving the first quadrant is

4(2i + 1)

(n + i + 1)(2n + 2i + 1)

(
2i

i

)(
3n + 2i

n

)
.

See [17] for more information about this result. If we set i = 0, then we get that the
number of such lattice paths that end in (0, 0) in 3n steps is precisely 4nW2(n). We do
not know of a direct proof of this fact.

For all the series models above no precise enumeration results are known with t > 2 but
we can conclude this section on a more positive note. If we have an unbounded number
of pop-stacks in series (in practice, any number more than n) then the number of sortable
permutations is, once again, the nth Schröder number. Also, the minimal unsortable
permutations are 2413 and 3142. These facts may be deduced from [8, 14]. It is also
known [7] what the enumeration function is for any fixed number of pop-stacks in series.

4 Enumeration of West t-stack-sortable permutations

by ascents

In this section we are concerned solely with West t-stack-sortable permutations and
for brevity we call these simply t-stack-sortable permutations. We shall review what
is known about the numbers Wt(n, k) where Wt(n, k) is the number of t-stack-sortable
n-permutations with k ascents. We propose to fix n and t, and investigate the finite
sequence (Wt(n, k))0≤k≤n−1.
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To this end we recall a number of definitions. A sequence of elements of R (the real
numbers) (ak)0≤k≤n is unimodal if there is an index m such that a0 ≤ a1 ≤ . . . ≤ am ≥
am+1 ≥ . . . ≥ an.

A related concept is that of log-concavity. The sequence (ak)0≤k≤n is log-concave if
ak−1ak+1 ≤ a2

k for all k. Such sequences abound in algebra, combinatorics, and geom-
etry. Stanley’s article [35] gives a good survey. It is easy to prove that if the numbers ak

are positive, and the sequence (ak)0≤k≤n is log-concave, then it is unimodal.

An even stronger property for a sequence (ak)0≤k≤n is when its generating function∑n
k=0 akx

k has real roots only. Another classic result is that if the numbers ak are positive,
and their generating function

∑n
k=0 akx

k has real roots only, then (ak)0≤k≤n is log-concave,
and therefore, unimodal.

We would like to study symmetry, unimodality, log-concavity, and real zeros properties
of these sequences and polynomials in the case that ak = Wt(n, k).

Three special instances of these problems are completely solved.

• If t = n − 1, then all permutations are t-stack sortable, so our enumeration is
reduced to that of enumerating permutations with a given number of descents.
Therefore, Wt(n, k) = A(n, k + 1), that is, Wn,t(x) = An(x), in other words, we get
the Eulerian polynomials. Therefore, [25], in this case our sequence is symmetric,
and our polynomial Wn−1(n, x) has real zeros only.

• If t = 1, then the numbers W1(n, k) will be the famous Narayana numbers, that is

W1(n, k) =
1

n

(
n

k

)(
n

k + 1

)
.

In particular, the sequence {W1(n, k)}, 0 ≤ k ≤ n − 1 is symmetric, and log-
concave. It is far from obvious, but true, that the generating function Wn,1(x) of
these numbers has real roots only [20]. A simpler proof for this fact was recently
found by P. Branden [18].

• If t = 2, then determining the numbers W2(n, k) is much more difficult. Constructing
a bijection with nonseparable planar maps, it can be shown [31] that

W2(n, k) =
(n + k)!(2n − k − 1)!

(k + 1)!(n − k)!(2k + 1)!(2n − 2k − 1)!
.

In particular, we get again that for any fixed n, the sequence {W2(n, k)}, 0 ≤ k ≤
n−1 is symmetric and log-concave. Also, Branden [18] has proved that Wn,2(x) has
real zeros only.

We mention that if t = n − 2, then our permutations are all n-permutations that do
not end in the string n1. Therefore, symmetry and log-concavity follows easily from the

the electronic journal of combinatorics 9(2) (2003), #A1 9



special case of t = n− 1 (all permutations), and the real zeros property is (probably) not
difficult to prove.

The present author has proved the following general theorem, settling the two weaker
questions for all t.

Theorem 4.1 [11] For any fixed t and n, the sequence {Wt(n, k)}, 0 ≤ k ≤ n − 1 is
symmetric and unimodal.

The key element of the proof is a representation of permutations by trees. If p is an
n-permutation, we associate a rooted plane tree T (p) to p as follows.

The root of T (p) is a vertex labeled n, the largest entry of p. If a is the largest entry of
p on the left of n, and b is the largest entry of p on the right of n, then the root will have
two children, the left one will be labeled a, and the right one labeled b. If n was the first
(resp. last) entry of p, then the root will have only one child, and that will be a left (resp.
right) child, and it will necessarily be labeled n − 1 as n − 1 must be the largest of all
remaining elements.

Define the rest of T (p) recursively, by taking T (p′) and T (p′′), where p′ and p′′ are the
substrings of p on the two sides of n, and affixing them to a and b. We then call T (p) the
decreasing binary tree of p.

Example 4.2 If p = 263498175, then T (p) is the tree shown below..

5

7

1

8

4

3

6

2

9

Figure 3: The decreasing binary tree of p = 263498175
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Proposition 4.3 Let p be any n-permutation. If we read the decreasing binary tree T (p)
of p in postorder, we obtain s(p).

Note that if p had k ascents, then T (p) has k left edges. Then the symmetry of our
sequence, that is, the equality Wt(n, k) = Wt(n, n − 1 − k) is proved by the following
duality map f .

For any decreasing binary tree T , leave the children of nodes with two
children unchanged. However if a node has only a left child, turn that
child into a right child, and if a node had only a right child, turn it into
a right child.

This map f is obviously an involution on the set of all binary decreasing trees on n vertices.
It does not change the postorder reading of the trees, so the permutations corresponding
to T and f(T ) have the same image under the stack-sorting operation. Therefore, f
preserves the t-stack sortable property while turning descents into ascents. See [11] for
examples of this duality map, and see [13] for the proof of unimodality that uses the
duality map f , and the reflection principle.

It is quite rare in combinatorics that for a sequence unimodality is easier to prove by
direct combinatorial means than log-concavity. Nevertheless, it does seem to be the case
here.

To state the next result we recall a definition from combinatorial geometry. A simplicial
complex is a collection of sets ∆ with the property that if E ∈ ∆, and F ⊆ E, then
F ∈ ∆. The sets that belong to the collection ∆ are called the faces of ∆. If S ∈ ∆ has i
elements, then we call S an (i−1)-dimensional face. The dimension of ∆ is, by definition,
the dimension of its maximal faces.

Recently, V. Gasharov constructively proved the following interesting result [25] that has
been proved before by F. Brenti [19] by other means, and discussed as a special case of a
more general setup (Coxeter groups, instead of just the symmetric group), in [23].

Theorem 4.4 There exists a simplicial complex whose (k − 1)-dimensional faces corre-
spond to n-permutations with k descents.

The constructive proof of Gasharov raises the following question. Is it true that for any
fixed n, there is a simplicial complex whose (k−1)-dimensional faces correspond to t-stack
sortable n-permutations with k descents (or ascents)?

1. The case of t = 1 is not difficult. We will show that there is a simplicial complex S
whose (k − 1)-dimensional faces correspond to stack sortable permutations with k
ascents. It is well-known that 231-avoiding, that is, stack-sortable, n-permutations
are in bijection with northeastern lattice paths from (0, 0) to (n, n) that never go
above the main diagonal. It is also well-known that this bijection turns the ascents
of the permutations into NE turns of lattice paths. Therefore, all we have to do is to
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L L L

L

1 2 3

Figure 4: From one lattice path to three.

decompose a northeastern lattice path with k NE turns into a k-tuple of northeastern
lattice paths with one NE turn each. This can be done as shown in Figure 4.

2. When t = 2, then we have to resort to a much deeper representation theorem of
our permutations. This representation was given in [21] and it creates a bijection
between 2-stack sortable permutations and β(1, 0)-trees.

Definition 4.5 [21] [31] A rooted plane tree with positive integer labels l(v) on each
of its nodes v is called a β(1, 0)-tree if it satisfies the following conditions:

• if v is a leaf, then l(v) = 1,

• if v is the root and v1, v2, · · · , vk are its children, then l(v) =
∑k

i=1 l(vk),

• if v is an internal node (that is, not the root, and not a leaf), and v1, v2, · · · , vk

are its children, then l(v) ≤ ∑k
i=1 l(vk).

See Figure 5 for an example.

The relevance of β(1, 0)-trees to our problem is revealed by the following Theorem,
which is quite difficult to prove.

Theorem 4.6 [21] [31] There exists a bijection b from the set of all β(1, 0)-trees on
n + 1 nodes onto that of all 2-stack sortable n-permutations so that if a β(1, 0)-tree
T has k internal nodes, then b(T ) has k ascents.

The decomposition takes a β(1, 0)-tree and splits its internal nodes into leaves. See
[12] for details.

It would be interesting to see similar decompositions for t > 2.
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0
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210

Figure 5: A β(1, 0)-tree .
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[30] G. Kreweras, Sur une classe des problèmes liés au treillis des partitions d’entiers.
Cahiers du B.U.R.O, 6 (1965), 5–105.

[31] B. Jacquard, G. Schaeffer, A bijective census of nonseparable planar maps. J. Com-
bin. Theory Ser. A, 83 (1998), no. 1, 1–20.

[32] M. M. Murphy, Restricted permutations, antichains, atomic classes and stack sorting,
PhD thesis, University of St Andrews, 2002.

[33] V.R. Pratt, Computing permutations with double-ended queues, parallel stacks and
parallel queues, Proc. ACM Symp. Theory of Computing, 5 (1973), 268–277

[34] Z. Stankova, J. West, A new class of Wilf-equivalent permutations. J. Algebraic
Combin., 15 (2002), no. 3, 271–290.

[35] R. P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and
geometry, in “Graph Theory and Its Applications: East and West,” Ann. NY Acad.
Sci. , 576 (1989), 500–535.

[36] R.E. Tarjan, Sorting using networks of queues and stacks, Journal of the ACM, 19
(1972), 341–346.

[37] J. W. Tutte, A census of planar maps, Canadian Journal of Mathematics, 33 (1963),
249–271.

[38] W. Unger, The Complexity of Colouring Circle Graphs STACS’92. Proceedings., A.
Finkel, Jantzen, M. (eds.), Springer, Lecture Notes in Computer Science, 577 1992,
389–400.

[39] J. West, Permutations with forbidden subsequences and Stack sortable permutations,
PhD-thesis, Massachusetts Institute of Technology, 1990.

the electronic journal of combinatorics 9(2) (2003), #A1 15



[40] D. Zeilberger, A proof of Julian West’s conjecture that the number of two-stack-
sortable permutations of length n is 2(3n)!/((n + 1)!(2n + 1)!), Discrete Math., 102
(1992), 85–93.

the electronic journal of combinatorics 9(2) (2003), #A1 16


