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Abstract

We prove that the space of possible final configurations for a parking problem is
parameterized by the vertices of a regular Bruhat graph associated to a 231-avoiding
permutation, and we show how this relates to parameterizing certain spaces of paths
in the Johnson graph.

1 Introduction

There are n seats on a row in a cinema hall, numbered 1, . . . , n starting from the aisle;
n− k seats are already taken, but seats q = {q1 < q2 < · · · < qk} are still available. Some
k late patrons want to take these seats; they enter the row and start advancing. When
they are in front of seats p = {p1 < p2 < · · · < pk} , the lights go off. Will they be able
to find the empty seats? (They can only advance towards the end of the row, but not
go back. Also, a patron can pass a patron in front of him only if that second patron is
already seated. Intuitively, it is like the late patrons are choosing their seats in the order
in which they entered the row.) It is clear that this is impossible if, for some i, the patron
in front of seat pi (for short, patron pi) passed more than k + 1 − i empty seats, so we
assume that pi ≤ qi, for all i = 1, . . . , k; if this condition is satisfied, we say that p � q
and call p, q an initial position.

A possible final arrangement is given by a permutation u ∈ Sk: for each i = 1, . . . , k,
patron pi takes the seat qu(i). For an initial position p, q, not all permutations might
appear, since a patron can’t go back; we call a permutation u ∈ Sk attainable from p, q
(or, simply, attainable, when no confusion is possible), if u can appear as the permutation
corresponding to a final arrangement if the initial position is p, q. For example, if everyone
knows how many empty seats he passed by, then, for each i = 1, . . . , k, the patron pi

could take the ith available seat, qi; the corresponding permutation is then the identity

the electronic journal of combinatorics 9(2) (2003), #R11 1



permutation. On the other hand, if everyone plays safe, then each patron will take the
first seat available (next to or in front of him) after the lights went off. Then patron pi

will end up occupying seat qw(i), where w = wp,q ∈ Sk is a permutation determined by the
relative ordering of the elements of p and q. We call such a permutation the safe choice
permutation (or simply, the safe permutation) for the initial position p, q.

Example 1.1. If there are 5 seats in a row, with seats 2, 4 and 5 empty, and patrons in
front of seats 1, 2 and 4, then the relative ordering is p1 < p2 ≤ q1 < p3 ≤ q2 < q3, the safe
permutation is (312) and the attainable permutations are (312), (132), (213), and (123).
(Throughout this paper we are using the abbreviated notation for the two-line form of
the permutation and not the cycle notation; in particular, (312) is the permutation that
sends 1 → 3, 2 → 1, and 3 → 2).

q1 q2 q3

p1 p2 p3

q q q q q q

p p p p p p1 1

1 1

2 2 2

2 2

3 3

3 3

w= (132) w= (213) w= (123)

1 2 3 4 5

q1 q2 q3

w    = (312)p,q

ppp 21 3

aisle

Figure 1: Safe permutation and other attainable permutations

In this note we answer the following questions:

1. Which permutations can appear as safe permutations? (For example, are there any
initial positions for which the corresponding safe permutation is (146235)? Same
question for (421365).)

2. If the safe permutation is w, which other permutations are attainable? (For example,
if for some initial position the safe permutation is (532146), is it possible to obtain
the permutation (524136)?)

3. What does this have to do with parking functions, stack-sortable permutations, or
with parameterizing spaces of paths in the Johnson graph?
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2 Statements of the results

In Section 4 we describe the permutations that can appear as safe permutations, and we
prove the following theorem.

Theorem 2.1. Let w ∈ Sk and let is(w) be the length of a longest increasing subsequence
in w.

1. If w is a safe permutation, then it avoids the pattern 231, i.e., there do not exist
indices i1 < i2 < i3 such that w(i3) < w(i1) < w(i2).

2. If w avoids the pattern 231, then w can be realized as the safe permutation for some
initial position if and only if n ≥ 2k − is(w).

This answers the first of our questions. The permutation u = (146235) can’t appear
as a safe permutation, since it contains the pattern 231, as 462 on positions 2, 3, and 4.
On the other hand, w = (421365) avoids the pattern 231, hence it can be realized as a
safe permutation, if we have enough space. A longest increasing subsequence, (1, 3, 5),
has length 3, so we need at least 9 seats. The relative ordering of the initial positions that
produce w is

p1 < p2 < p3 ≤ q1 < q2 < p4 ≤ q3 < q4 < p5 < p6 ≤ q5 < q6 .

The proof of Theorem 2.1 is based on the connection between 231-avoiding permu-
tations and stack-sortable permutations, and we introduce the necessary definitions and
results about stack-sortable permutations in Section 3 (see [S, p.226], [K, p.239] for more
details).

In Section 5 we determine which permutations are attainable from some initial posi-
tion. Let τij be the transposition interchanging i < j. If w ∈ Sk is a permutation, we say
that w ≺ wτij if w(i) < w(j). The Bruhat order on Sk is the partial order generated by
these relations (see [F]).

Remark 1. We are using the same notation, �, both for comparing permutations and for
comparing increasing sequences. While this might be somewhat annoying, there is a good
reason for doing this: we are, in fact, talking about the same relation. To each increasing
sequence p1 < p2 < · · · < pk of elements from {1, . . . , n} corresponds a permutation
wp = (p1p2 . . . pkp

′
1 . . . p′n−k) ∈ Sn, where p′1 < p′2 < · · · < p′n−k are the elements of the

complement of p. Then p � q (as increasing sequences) if and only if wp � wq (as
permutations). Moreover, if u, v ∈ Sn, then u � v (as permutations) if and only if

{u(1), . . . , u(r)}↑ � {v(1), . . . , v(r)}↑

(as increasing sequences) for all r = 1, . . . n, where, for a set S, S↑ is the sequence obtained
by arranging the elements of S in increasing order.
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Definition 2.1. For a permutation w ∈ Sk, the flow-down of w is the set

X(w) = {u ∈ Sk : u � w} ⊆ Sk .

Theorem 2.2. A permutation u ∈ Sk is attainable from the initial position p, q if and
only if u ∈ X(wp,q), where wp,q is the safe permutation for p, q.

In particular, if wp,q = (532146) and u = (524136), then {5, 2, 4}↑ � {5, 3, 2}↑, hence
u � wp,q. Therefore u is not attainable.

In Section 6 we show how these questions and their answers are related to parameter-
izing certain spaces of paths in the Johnson graph.

The Johnson graph, J(n, k), is the graph whose vertices are the k-element subsets of
{1, . . . , n}, and whose edges are (V1, V2) such that #(V1 ∩ V2) = k − 1 (see [BCN]). If
V1 = V ∪{i} and V2 = V ∪{j}, with #V = k− 1, we label the oriented edge e = V1V2 by
(i, j); if i < j, we say that the edge e = V1V2 is ascending. We also say that V2 has been
obtained from V1 by replacing i with j. A path

γ : V1
(i1,j1)−→ V2

(i2,j2)−→ . . .
(im,jm)−→ Vm+1

is called ascending if each edge is ascending, and is called relevant if it is ascending and
satisfies the condition

i1 > i2 > · · · > im .

Let Ωp,q be the set of relevant paths from p to q; this set is non-empty if and only if p, q
is an initial position.

Example 2.1. The relevant paths from p = {1, 2, 4} to q = {2, 4, 5} are

γ1 : {1, 2, 4} (4,5)−→ {1, 2, 5} (2,4)−→ {1, 4, 5} (1,2)−→ {2, 4, 5}
γ2 : {1, 2, 4} (2,5)−→ {1, 4, 5} (1,2)−→ {2, 4, 5}
γ3 : {1, 2, 4} (4,5)−→ {1, 2, 5} (1,4)−→ {2, 4, 5}
γ4 : {1, 2, 4} (1,5)−→ {2, 4, 5}

and Ωp,q = {γ1, γ2, γ3, γ4}.
The main result in Section 6 is the following:

Theorem 2.3. There exists a bijection between Ωp,q and X(wp,q).

Acknowledgements. I am grateful to Victor Guillemin, Ethan Bolker, and Thom
Pietraho for their valuable comments on early drafts of this paper, to Ioana Dumitriu
for her comments on the many faces of 231-avoiding permutations, to Michael Kleber
and Anders Buch for suggesting the connection between initial positions and parking
functions, and to Sara Billey for many useful comments, including (but not limited to)
the possible relation between safe permutations and stack-sortable permutations. At last,
but not at least, my thanks to a very careful referee, whose suggestions and comments
improved the content and the presentation of this paper.
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3 Stack-sortable permutations

Stack-sorting is an algorithm that takes a list L of distinct numbers and changes it to
a list L′. At each stage of the process, we have a right list, a left list, and a stack (a
last-in-first-out list) between them. The process starts with the left list and the stack
empty, and the right list L, and ends with the stack and the right list empty, and the left
list L′, consisting of the same elements as L, but not necessarily in the same order. One
step of the algorithm consists in moving an element from the right list to the stack or
from the stack to the left list, according to the following rules:

1. If the stack is empty or if the first element of the right list is smaller than the top
of the stack, we move the first element of the right list into the stack (as the new top).

2. If the right list is empty or if the first element of the right list is greater than the
top of the stack, then we move the top out of the stack and add it as the last element of
the left list.

The algorithm is successful if the list L′ contains the elements of L sorted increasingly;
if this is the case, we say that L is stack-sortable. To each permutation u ∈ Sk corresponds
a list Lu = [u(1), . . . , u(k)], and we say that u is stack-sortable if Lu is stack-sortable.

For example, the sorting processes for (312) and for (231) go as follows:

312

3

12

3
1

2 1

3

2 1

3

12

3

123
2

231

2

31 2 31 2

3

1

3
1

2 21

3

213

Figure 2: Sorting processes

In the examples above, (312) is stack-sortable, but (231) is not. In fact, in some sense,
this is the only thing that can prevent a permutation from being stack-sortable.

Theorem 3.1. A permutation is stack-sortable if and only if it avoids the pattern 231.

4 Safe permutations and pattern avoidance

Let p, q ∈ J(n, k), with p1 < · · · < pk and q1 < · · · < qk. We assume that p, q is an
initial position, hence that pi ≤ qi for all i = 1, . . . , k. Let wp,q be the safe permutation
associated to the initial position p, q.

Patron pk takes the first empty seat next to or in front of him, hence

wp,q(k) = min{j : pk ≤ qj} .

Patron pk−1 takes the first initially empty seat next to or in front of him, unless that seat
has already been taken by pk, in which case pk−1 advances and takes the first remaining
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seat. Similarly for the other patrons, hence, for s = k − 1, . . . , 1,

wp,q(s) = min{j : j 6= wp,q(s + 1), . . . , wp,q(k) and ps ≤ qj} .

We are now ready to prove that safe permutations avoid the pattern 231, and that
any permutation that avoids the pattern 231 can be realized as a safe permutation, if we
have enough spaces (Theorem 2.1).

Proof of Theorem 2.1. Let p, q be an initial position and let w be the safe permutation
associated to p, q. Suppose w contains the pattern 231, i.e., suppose there exist i1 < i2 < i3
such that w(i3) < w(i1) < w(i2). Then

pi1 < pi2 < pi3 ≤ qw(i3) < qw(i1) < qw(i2) ,

and this contradicts the definition of w(i2). This proves part 1 of the theorem.
To prove part 2, let w be a permutation that avoids the pattern 231. Then w is stack-

sortable and we use the stack-sorting algorithm to construct an initial position p, q such
that wp,q = w, as follows:

1. Whenever we move an element from the right list to the stack we add an element
pi of p, strictly greater than all the elements of p, q already added.

2. Whenever we move an element x from the stack to the left list we add an element qi

of q, strictly greater than all the elements of p, q already added, except when the previous
move in the sorting algorithm was moving x into the stack, in which case the new element
of qi may be greater than or equal to the last element of p, q already added.

Before discussing the general case, it might be clearer how this works if we consider a
particular permutation. For example, the construction of an initial position for (421365)
goes as follows:

421365

4
2
1

365 12

4

365 12

4
3

65 1234 65 1234

6
5

123456

Figure 3: Sorting (421365)

Put 4, 2, and 1 into the stack – start with p1 < p2 < p3. Move 1 (just added to the
stack) and 2 out – add q2 > q1 ≥ p3. Put 3 in – add p4 > q2. Move 3 (just added) and
4 out – add q4 > q3 ≥ p4. (Notice that at this point, the stack is empty). Put 6 and 5
in – add p6 > p5 > q4. Move 5 (just added) and 6 out – add q6 > q5 ≥ p6. The relative
ordering of the elements of the initial position p, q is

p1 < p2 < p3 ≤ q1 < q2 < p4 ≤ q3 < q4 < p5 < p6 ≤ q5 < q6 .

It is easy to check that p, q is an initial position and that the corresponding safe permuta-
tion is (421365). Moreover, p, q is feasible if and only if n ≥ 9 (= 12 − 3), and the length
of a longest increasing subsequence in (421365) is 3 (for example, 1 < 3 < 5).

the electronic journal of combinatorics 9(2) (2003), #R11 6



Returning to the general case, we have to prove the following statements:

Claim 1: p, q is indeed an initial position.
To prove that p � q, it suffices to show that for every N ≥ 1, the number of elements

of p that are less than N is greater or equal to the number of elements of q that are
less than N . But this is clear, since in our construction process, at any given time, the
number of elements of p added is the same as the number of elements that have entered
the stack, the number of elements of q added is the same as the number of elements that
have already been moved out of the stack, and the stack was initially empty.

Claim 2: The safe permutation corresponding to p, q is w.
To see this, we analyze the reverse “mixing” process: we start with the identity per-

mutation (12 . . . k) as the left list and, by moving from right to left through the increasing
sequence of elements of both p and q and reversing the actions taken during the sorting
algorithm, we reconstruct w as our right list. Therefore, when we encounter an element of
q, we move one element from the end of the left list into the stack, and when we encounter
an element of p, we move the top of the stack to the beginning of the right list. If an
element of p is equal to an element of q, then we read the element of q first.

The first elements encountered are from q, hence we start by moving k, k − 1, . . . into
the stack, until we arrive at the first element of p, pk. At this point, the top of the stack
is the index of the last element of q encountered. We move the top of the stack out, as
the first entry of the right list. Since this reverse process reconstructs w, this first element
is w(k). So qw(k) is the smallest element of q which is not smaller than pk, and therefore
w(k) = wp,q(k). Now wp,q(k) is no longer in the stack. We continue our reverse procedure
and add elements to the stack, until we arrive at pk−1. The last element of q encountered
is qw(k−1), and this is the smallest element of q not smaller than pk−1, other than (possibly)
qwp,q(k), hence

w(k − 1) = min{j : pk−1 < qj and j 6= wp,q(k)} = wp,q(k − 1) .

In general, when we arrive at the element ps of p, the top of the stack is the index of the
smallest element of q which is not smaller than ps, other than the elements of q that have
already been moved out of the stack. Therefore

w(s) = min{j : ps ≤ qj and j 6= wp,q(k), wp,q(k − 1), . . . , wp,q(s + 1)} = wp,q(s)

for all s = k, . . . , 1, hence wp,q = w.

Claim 3: We need n ≥ 2k − is(w) to realize an initial position p, q with safe permu-
tation w.

The relative ordering of the elements of p and q is completely determined by the safe
permutation wp,q, hence all we need to show here is that our construction of the initial
position p, q works if and only if there n ≥ 2k − is(w)

Clearly any initial position can be realized if n ≥ 2k. But we don’t really need all
these spaces: some of the inequalities between elements of p and q are non-strict, so we
can save space by requiring that the non-strict inequalities be in fact equalities. How
many such non-strict inequalities are there? We have such an inequality each time an
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element is moved out of the stack immediately after it has been added, and this happens
precisely when we reach the end of a consecutive decreasing subsequence in w, so we may
save at most as many spaces as the number of consecutive decreasing subsequences of w.
Let

w(1) > w(2) > · · · > w(a1) ,

w(a1 + 1) > · · · > w(a2) ,

· · ·
w(ad−1 + 1) > · · · > w(ad) ,

be the consecutive descending subsequences in w, with a1 < a2 < · · · < ad. A subsequence
of w with length strictly greater than d must have two terms in the same consecutive
descending subsequence of w, hence it can not be increasing; therefore is(w) ≤ d. But
since w is 231-avoiding, we have w(a1) < w(a2) < · · · < w(ad), hence w has an increasing
subsequence of length d. This proves that is(w) = d. (In the example considered at
the beginning of the proof, w = (421365), the consecutive decreasing subsequences are
(4, 2, 1), (3), and (6, 5) and an increasing subsequence of maximal length is obtained by
taking the last elements of these decreasing subsequences.)

There is a nice (though not efficient) criterion to recognize 231-avoiding permutations:
for w ∈ Sk we define d(w) = (d1(w), . . . , dk(w)), where, for each i = 1, . . . , k,

di(w) = #{j : j < i and w(j) < w(i)} .

Hence d(146235) = (0, 1, 2, 1, 2, 4) and d(421365) = (0, 0, 0, 2, 4, 4).

Proposition 4.1. A permutation w ∈ Sk is 231-avoiding if and only if the sequence d(w)
is weakly increasing.

Proof. For w ∈ Sk, let Mi(w) be the set whose cardinality is denoted by di(w).
Assume that d(w) is not weakly increasing, so there exists a value i > 1 such that

di+1(w) < di(w). Then necessarily w(i + 1) < w(i) and Mi+1(w) is strictly included in
Mi(w). If j ∈ Mi(w) − Mi+1(w), then j, i, i + 1 corresponds to a 231 pattern in w.

Conversely, assume that w contains a 231 pattern and let i1 < i2 < i3 be the positions
where such a pattern appears, with i3 minimal. Then i1, i3 − 1, i3 also corresponds to a
231 pattern, Mi3(w) is included in Mi3−1(w), and because i1 ∈ Mi3−1(w) − Mi3(w), the
inclusion is strict. Therefore di3(w) < di3−1(w), so d(w) is not weakly increasing.

Remark 2. It is easy to see that di(w) = cw0(i)(ww0), where c(u) is the code of the
permutation u ∈ Sk (see [M]) and w0 = (k k− 1 . . . 2 1) ∈ Sk. (The length of a
permutation w is the number of inversions in w and w0 is the longest permutation in Sk.)

Since w is 231-avoiding if and only if ww0 is 132-avoiding, Proposition 4.1 is in fact a
restatement of the following observation of Sara Billey ([B]):

Proposition. A permutation is 132-avoiding if and only if its code is weakly decreasing.
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Remark 3. We can formulate the initial problem as a parking problem (see [S, p.94]):
There are k parking spaces on a one-way street, in front of houses q1 < · · · < qk. Cars
C1, . . . , Ck (belonging to occupants of houses pk > pk−1 > · · · > p1) enter the street in
that order and try to park. Each driver has a preferred spot: the first space in front or
after his house. If that space is taken, the car will be parked in the next available space.
Hence the sequence of preferences is αp,q = (α1, ., αk), where

α(i) = min{j : pk+1−i ≤ qj} .

If αp,q is a sequence of preferences that allows every car to park, then αp,q is called a
parking function; this is the case if and only if p � q. When cars are parked according
to αp,q, car Ci occupies space qw(i), where w = w(αp,q) is a permutation in Sk; this
permutation is related to our safe permutation wp,q by

w(αp,q) = wp,qw0 ,

where w0 is the longest permutation in Sk.

5 Attainable permutations

A permutation u ∈ Sk is attainable from an initial position p, q if and only if

pi ≤ qu(i) for all i = 1, . . . , k . (1)

Let Wp,q be the set of attainable permutations. Theorem 2.2 states that Wp,q is the set
of permutations that precede (or are equal to) wp,q in the Bruhat order, and the proof
follows from the next two lemmas.

Lemma 5.1. If u ∈ Wp,q and uτij ≺ u, then uτij ∈ Wp,q.

Proof. Assume i < j. Then u(i) > u(j), since uτij ≺ u. But then

pi < pj ≤ qu(j) = quτij(i) , pj ≤ qu(j) < qu(i) = quτij(j) ,

and if r 6= i, j, then pr ≤ qu(r) = quτij(r); therefore uτij ∈ Wp,q.

Lemma 5.2. The only maximal element of Wp,q is wp,q.

Proof. Let u ∈ Wp,q be a maximal element, and assume that u 6= wp,q. Then there exists
r ≥ 1 such that u(i) = wp,q(i), for i = r + 1, . . . , k, but u(r) 6= wp,q(r).

Let t = u(r). Then pr ≤ qt and

t 6∈ {u(k), . . . , u(r + 1)} = {wp,q(k), . . . , wp,q(r + 1)} ,

hence wp,q(r) ≤ t. Then wp,q(r) = t′ < t and

t′ 6∈ {wp,q(k), . . . , wp,q(r + 1)} = {u(k), . . . , u(r + 1)} ,

hence u−1(t′) = r′ < r. Then r′ < r and u(r′) = t′ < t = u(r), hence u ≺ uτr′r. But

pr′ = pr ≤ qu(r) = quτr′r(r′) and pr ≤ qwp,q(r) = qu(r′) = quτr′r(r) ,

hence uτr′r ∈ Wp,q. This contradicts the assumption that u is maximal in Wp,q, so u = wp,q,
and this completes the proof.
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6 Parameterizations of spaces of paths

Let p, q be vertices of the Johnson graph J(n, k), such that p � q. In Section 2 we defined
the relevant paths from p to q to be the ascending paths

γ : p = V1
(i1,j1)−→ V2

(i2,j2)−→ . . .
(im,jm)−→ Vm+1 = q (2)

which satisfy the condition
i1 > i2 > · · · > im . (3)

In [Z], we attach to each relevant path γ from p to q a rational expression E(γ) in the
variables x1, . . . , xn, and, by summing over the space Ωp,q of relevant paths from p to q,
we get a polynomial

Sp,q =
∑

γ∈Ωp,q

E(γ) ∈ C[x1, . . . , xn] . (4)

This procedure is akin to a discrete version of integration over Ωp,q and in this section
we prove that the space Ωp,q of relevant paths from p to q can be parameterized by the
set X(wp,q) of attainable permutations for the initial position p, q (Theorem 2.3).

Proof of Theorem 2.3. Let p = {p1 < · · · < pk}, q = {q1 < · · · < qk} be an initial
position. A key consequence of (3) is that along a relevant path (2), an element that has
been added can’t be replaced, and hence all the added elements are distinct. Therefore
we can define a map Φ : Ωp,q → Sk by associating a permutation v = Φ(γ) ∈ Sk to each
relevant path (2), according to the following rules:

1. If pi = ir, then v(i) is defined by jr = qv(i).
2. If pi 6∈ {i1, . . . , im}, then v(i) is defined by pi = qv(i).

To can make the relation between a relevant path γ and its associated permutation
v = Φ(γ) more suggestive by representing the path as

γ : p
(pk ,qv(k))−→ . . .

(p1,qv(1))−→ q ; (5)

if pi = qv(i), then the corresponding “edge” is in fact a loop that starts and ends at the
same vertex, and we can delete this loop from our path.

From (1) and (5) it follows that Φ is injective and the image of Φ is X(wp,q), the set of
attainable permutations. Therefore Φ induces a bijection between Ωp,q and X(wp,q).

Example 6.1. For the paths in Example 2.1, the permutations are

Φ(γ1) = (123), Φ(γ2) = (132), Φ(γ3) = (213), Φ(γ4) = (312) .

The Bruhat graph is the Cayley graph associated to (Sk, T ), where T is the set of
transpositions in Sk: the vertices are permutations w ∈ Sk and two vertices w1 and w2

are joined by an edge if w−1
1 w2 is a transposition. This is a regular graph, since each

vertex has k(k−1)/2 neighbors. For a permutation w ∈ Sk, the Bruhat graph of w is the
subgraph of the Bruhat graph whose set of vertices is X(w), the flow-down from w.
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If w avoids the patterns 3412 and 4231, then the Bruhat graph of w, X(w), is a regular
subgraph of Sk (see [LS], [C]): each vertex of X(w) has `(w) neighbors in X(w), where
`(w) is the length of w.

For an initial position p, q, we have proved in Theorem 2.2 that the set of attainable
permutations is X(wp,q). By Theorem 2.1, wp,q avoids the pattern 231, hence it also avoids
the patterns 3412 and 4231. Therefore Theorem 2.3 states that Ωp,q is parameterized
by the vertices of a regular graph, and in [Z] we use a localization formula and the
parameterization given in Theorem 2.3 to show that (4) is indeed an integral over a
smooth manifold.

Remark. It may seem bizarre that a finite sum is actually an integral over a smooth
manifold, but this is one of the beauties of integrating equivariant classes (see [GS] for
details). In the situation considered in [Z], an equivariant class is determined by its values
at the fixed points, and, by the localization formula of Atiyah-Bott-Berline-Vergne, its
integral is computed by adding the contributions of the finitely many fixed points.
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