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Abstract

We obtain a characterization of (321, 31̄42)-avoiding permutations in terms of
their canonical reduced decompositions. This characterization is used to construct
a bijection for a recent result that the number of (321, 31̄42)-avoiding permutations
of length n equals the n-th Motzkin number, due to Gire, and further studied
by Barcucci, Del Lungo, Pergola, Pinzani and Guibert. Similarly, we obtain a
characterization of (231, 41̄32)-avoiding permutations. For these two classes, we
show that the number of descents of a permutation equals the number of up steps
on the corresponding Motzkin path. Moreover, we find a relationship between the
inversion number of a permutation and the area of the corresponding Motzkin path.

1. Introduction

Permutations with forbidden subsequences have been extensively studied over the last
decade. Simion and Schmidt [21] and West [26] initiated the efforts towards forbidden
subsequences of length 3. West [25] and Stankova [22] continued to study forbidden subse-
quences of length 4, and discovered that the number of permutations in Sn+1(3142, 2413)
equals the n-th Schröder number. Using the idea of generating trees, Kremer [17] dis-
covered ten classes of permutations with forbidden patterns that are in one-to-one corre-
spondence with Schröder paths. Dyck paths are also closely related to permutations with
forbidden patterns, see Stanley [23], Krattenthaler [16] and West [26].

Motzkin paths come to the scene of permutations with forbidden patterns through
the work of Gire [13], Barcucci, Del Lungo, Pergola and Pinzani [5, 6], Guibert [14]
and Guibert, Pergola and Pinzani [15]. The classes Sn(321, 31̄42) and Sn(231, 41̄32) are
enumerated by the n-th Motzkin number. Guibert [14] discovered that the involutions
with forbidden patterns 3412, 4321, 1234 or 1243 are enumerated by Motzkin numbers.
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Moreover, Guibert, Pergola and Pinzani [15] proved that the number of avoiding-2143
involutions of length n equals n-th Motzkin number by the method of generating trees.

The first result of this paper is an explicit bijection between Sn(321, 31̄42) and the set
of Motzkin paths of length n. Using the canonical reduced decompositions, we obtain a
characterization of permutations in Sn(321, 31̄42) in terms of their canonical reduced de-
compositions. Similarly, we give a bijection between Sn(231, 41̄32) and the set of Motzkin
paths of length n by their trapezoidal reduced decompositions.

Here are some known results in this direction: Bandlow and Killpatrick [3] give a
bijection between Sn(312) and Dyck paths by using reduced decompositions. Bandlow,
Egge and Killpatrick [2], and Egge and Mansour [12] find bijections between permutations
with forbidden patterns and Schröder paths.

For the two classes of permutations studied in this paper, we show that the number
of descents of a permutation equals to the number of up steps on a Motzkin path, and
we find a relationship between the inversion number of a permutation and the area of the
corresponding Motzkin path.

2. Reduced decompositions for Sn(321, 31̄42)

In this section, we give a characterization of permutations in Sn(321, 31̄42) in terms of
their canonical reduced decompositions. We begin with some definitions and notations.

Let Sn be the set of permutations on [n] = {1, 2, . . . , n}, where n ≥ 1. For a per-
mutation σ of k positive integers, the pattern or type of σ is defined as a permutation τ
on [k] obtained from σ by substituting the minimum element by 1, the second minimum
element by 2, ..., and the maximum element by k. Sometimes we say that a permutation
is order equivalent to its pattern. For example, the pattern of 68254 is 45132. For a
permutation τ ∈ Sk and a permutation π ∈ Sn, we say that π is τ -avoiding if there is no
subsequence πi1πi2 · · ·πik (i1 < i2 < · · · < ik) whose pattern is τ . We write Sn(τ) for the
set of τ -avoiding permutations of [n].

A barred permutation τ̄ of [k] is a permutation of Sk having a bar over one of its
elements. Let τ be the permutation on [k] obtained by unbarring τ̄ , and τ̂ the pattern of
the permutation obtained from τ by removing the barred element. A permutation π ∈ Sn

contains a subsequence ω of type τ̄ if and only if ω is of type τ̂ and it is not contained in
any subsequence of type τ . In other words, a subsequence ω of π is of type τ̄ if it is of type
τ̂ and it cannot be extended to a subsequence of type τ . Equivalently, for a permutation
π ∈ Sn, if every subsequence of type τ̂ can be extended to a subsequence of type τ , then
we say that π avoids the barred pattern τ̄ . We denote by Sn(τ̄) the set of permutations
of Sn avoiding the pattern τ̄ .

For example, if π = 473591628, τ̄ = 2351̄4, then τ = 23514, τ̂ = 1243, all the subse-
quences of pattern 1243 are: 3596, 3598, 4596, 4598 and 4798; which are the subsequences
of: 35916, 35918, 45916, 45928 and 47928 respectively, so we have π ∈ S9(2351̄4).

We now review the notion of the canonical reduced decomposition of a permutation
[19, 24]:
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Definition 2.1 For any 1 ≤ i ≤ n− 1, define the map si: Sn → Sn, such that si acts on
a permutation by interchanging the elements in positions i and i + 1. We call si a simple
transposition, and write the action of si on the right of the permutation, denoted by πsi.
Therefore one has π(sisj) = (πsi)sj.

For example, 362514s2 = 326514. The product of simple transpositions satisfies the
Braid relations:

si+1sisi+1 = sisi+1si,

sisj = sjsi, |i − j| 6= 1.

The permutation 1 2 · · · n is called the minimum permutation whose canonical reduced
decomposition is the identity. The permutation w = n n−1 · · · 1 is called the maximum
permutation which has the following canonical reduced decomposition:

n n − 1 · · · 1 = 1 2 · · · n(s1)(s2s1)(s3s2s1) · · · (sn−1sn−2 · · · s1).

In general, the canonical reduced decomposition of π ∈ Sn has the following form:

π = (1 2 · · · n)σ = (1 2 · · · n)σ1σ2 · · ·σk, (2.1)

where
σi = shi

shi−1 · · · sti , hi ≥ ti (1 ≤ i ≤ k) and

1 ≤ h1 < h2 < · · · < hk ≤ n − 1.

Note that if one writes π in the two row notation (as a permutation in the symmetric
group), then from (2.1) one has the relation π = σ1σ2 · · ·σk. We call hi the head and ti
the tail of σi.

For example, for π = 315264 ∈ S6, the canonical reduced decomposition is (s2s1)(s4s3)
(s5). It is well-known that the above canonical reduced decomposition is unique. In fact,
we have the following algorithm to generate the canonical reduced decomposition based
on the recursive construction of a permutation on [n] by inserting the element n into a
permutation on [n − 1]. From this point of view, the idea of the canonical reduced de-
compositions falls into the general framework of the ECO methodology [4, 5].

Algorithm: Observe that the product sjsj−1 · · · si is equivalent to the action of the cyclic
permutation on the segment from position i to position j +1. For the permutation 1, the
reduced decomposition is the identity. Suppose that we have constructed the canonical
reduced decomposition for the permutation π\n, which is obtained from π by deleting the
element n. Assume that n is in position i in π. If i = n, the reduced decomposition of π is
the same as that of π\n. For i 6= n, the action of sn−1sn−2 · · · si would bring the element
n to the proper position and shift other relevant elements to the positions on their right.
This gives the canonical reduced decomposition of π.

The canonical reduced decomposition has the following property [3, 19]:
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Lemma 2.2 If σ is the canonical reduced decomposition of π ∈ Sn, then π has k inver-
sions if and only if σ has exactly k simple transpositions.

The first result of this paper is the following characterization of canonical reduced
decompositions of permutations in Sn(321, 31̄42).

Theorem 2.3 Let σ = σ1 · · ·σk be the canonical reduced decomposition of π ∈ Sn, where
σi = σhi

σhi−1 · · ·σti for 1 ≤ i ≤ k. Then

π ∈ Sn(321, 31̄42) if and only if ti+1 ≥ ti + 2, for 1 ≤ i ≤ k − 1.

Proof. The cases k = 0, 1 are obvious. We consider the case k ≥ 2.
=⇒) We use induction on n. Clearly, the statement is true for n = 1, 2, 3. Suppose it
is true for n − 1. Assume that n is in position i in π. If i = n, then the assertion is
automatically true because the canonical reduced decomposition of π \ n is the same as
that of π. When i 6= n, the canonical reduced decomposition of π has one more factor
σk = sn−1sn−2 · · · si. In other words, hk = n − 1 and tk = i. We aim to show that
i ≥ tk−1 + 2. Let

π \ n = β1 β2 · · · βi−1 βi · · · βn−1,

π = β1 β2 · · · βi−1 n βi · · · βn−1.

By the inductive hypothesis, π\n ∈ Sn−1(321, 31̄42). Assume that tk−1 = i− 1. From the
recursive constructions of the canonical reduced decompositions, one sees that whenever
an element is brought to the proper position, it is always bigger than the element on its
right. Thus one has βi−1 > βi. It follows that βi−1 n βi has pattern 231 and there is no
element between βi−1 and n, which is a contradiction to the fact that π avoids the pattern
31̄42. Again, we assume that tk−1 ≥ i. For the same reason, one sees that βtk−1

> βtk−1+1.
Thus n βtk−1

βtk−1+1 has pattern 321, which is also a contradiction. Therefore, we conclude
that i ≥ tk−1 + 2.
⇐=) We use induction on n. Clearly, the statement is true for n = 1, 2, 3. Assume that it
is true for n− 1. Suppose that n is in position i in π. When i = n, the canonical reduced
decomposition of π is the same as that of π \ n. Then we have π ∈ Sn(321, 31̄42) since
π \ n ∈ Sn−1(321, 31̄42). When i 6= n, the canonical reduced decomposition of π has one
more factor σk = sn−1sn−2 · · · si. In other words, hk = n − 1 and tk = i. Notice that we
have the condition i ≥ tk−1 + 2. Let hk−1 = n − m − 1 with m ≥ 1, and let

π \ n = β1β2 · · ·βn−1 = (1 2 · · · n − 1)σ1σ2 · · ·σk−1.

Then we have

π \ n = β1 · · · βtk−1−1 (n − m) βtk−1+1 · · · βn−m (n − m + 1) · · · (n − 1),

where βtk−1
= n − m. By the inductive hypothesis, π \ n ∈ Sn−1(321, 31̄42), thus the

subsequence βtk−1+1 · · · βn−m is increasing. Since i ≥ tk−1 + 2, we have n − m precedes
βi−1 in π\n. Therefore, we obtain

π = β1 · · · (n − m) · · · βi−1 n βi · · · βn−m · · ·βn−1,
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where n−m ≥ βl for l = 1, · · · , n−m. Assume that there exists a 321-pattern in π which
contains n, namely, a subsequence n βj βk for some i ≤ j < k. One sees that this may be
possible only for j < k ≤ n − m. Then (n − m) βj βk would form a 321-pattern in π \ n,
which leads to a contradiction. Now we assume that there exists a 231-pattern in π that
contains n, say βj n βk, then we have j < i and i ≤ k ≤ n − m. Here are three cases:

1. βj precedes n−m in π. Then βj (n−m) βk is a 231-pattern in π\n. Thus there exists
an element βl between βj and n−m such that βj βl (n−m) βk is a 3142-pattern. It
follows that βj βl n βk is of type 3142.

2. βj = n − m, namely, (n − m) n βk is a 231-pattern. In this case, we have βi−1 < βk

because π \ n is 321-avoiding. It follows that (n − m) βi−1 n βk is a 3142-pattern.

3. βj is between n − m and n. Then (n − m) βj βk forms a 321-pattern which is a
contradiction to the inductive hypothesis.

In summary, we have shown that π ∈ Sn(321, 31̄42).
From Theorem 2.3, we establish a relationship between the set of descents and the set

of tails of the canonical reduced decompositions for permutations in Sn(321, 31̄42). Recall
that the set of descents of a permutation π ∈ Sn is defined by D(π) = { i |πi > πi+1}.

Theorem 2.4 For any permutation π ∈ Sn(321, 31̄42), let σ = σ1σ2 · · ·σk be the canoni-
cal reduced decomposition of π, where σi has head hi and tail ti. Then the set of descents
of π is given by {t1, t2, . . . , tk}.

3. The Strip Decomposition

In this section, we present a bijection between Sn(321, 31̄42) and the set of Motzkin paths
of length n based on the characterization given in the preceding section. A Motzkin path
of length n is a path on the plane from the origin (0, 0) to (n, 0) consisting of horizontal
steps, up steps and down steps such that the path does not go across the x-axis. We will
use H , U and D to represent the horizontal, up and down steps, respectively. The set
of Motzkin paths of length n is denoted by Mn, and the cardinality of Mn is called the
n-th Motzkin number. The first few Motzkin numbers are 1, 1, 2, 4, 9, 21, 51, 127, · · · . For
references on Motzkin paths, the reader is referred to [1, 7, 8, 9, 10, 11, 18, 20].

For example, UHUDHD is a Motzkin path of length 6. Note that we may also use
the representation of a Motzkin path by the points on the path:

(0, 0) = A0 → A1 → A2 → · · · → An = (n, 0).

By Theorem 2.3, there exists a one-to-one correspondence between Sn(321, 31̄42) and
the canonical reduced decompositions satisfying the following conditions

ti+1 ≥ ti + 2, for 1 ≤ i ≤ k − 1. (3.1)
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Therefore, we are led to establish a bijection between Motzkin paths and the canonical
reduced decompositions satisfying the conditions (3.1). What really matters is the set of
parameters {(hi, ti)|1 ≤ i ≤ k} satisfying

1 ≤ h1 < h2 < · · · < hk ≤ n − 1,

hi ≥ ti (1 ≤ i ≤ k),

ti ≥ ti−1 + 2 (2 ≤ i ≤ k).

(3.2)

Our bijection involves a labelling of the cells in the region of a Motzkin path. The
region of a Motzkin path is meant to be the area surrounded by the path and the x-axis.
Furthermore, the region of a Motzkin path is subdivided into cells which are either unit
squares or triangles with unit bottom sides. A triangular cell either contains an up-step
or a down step. We will not label triangular cells containing up-steps. The other types of
cells, either square or triangular, have bottom sides, say with points (i, j) and (i+1, j), we
will label these cells with si+j or simply i + j. We call this labelling the (x + y)-labelling.

We now define the strip decomposition of a Motzkin path. Suppose Pn,k is a Motzkin
path of length n that contains k up steps. If k = 0, then the strip decomposition of Pn,0 is
simply the empty set. For any Pn,k ∈ Mn, let A → B be the last up step and E → F the
last down step on Pn,k. Then we define the strip of Pn,k as the path from B to F along
the path Pn,k. Now we move the points from B to E one layer lower, namely, subtract
the y-coordinate by 1, and denote the adjusted points by B′, . . ., E ′. We form a new
Motzkin path by using the path Pn,k up to the point A, then joining the point A to B′

and following the adjusted segment until we reach the point E ′, then continuing with the
points on the x-axis to reach the destination (n, 0). Denote this Motzkin path by Pn,k−1,
which may end with some horizontal steps.

From the strip of Pn,k, we may define the value hk as the label of the cell containing
the step E → F . Clearly, we have hk ≤ n − 1. The value tk is defined as the label of the
cell containing the step starting from the point B.

Iterating the above procedure, we get a set of parameters {(hi, ti)|1 ≤ i ≤ k} satisfying
the conditions (3.2). For each step in the above procedure, we obtain a product of
transpositions σi = shi

shi−1 · · · sti . Finally we get the corresponding canonical reduced
decomposition σ = σ1σ2 · · ·σk and the corresponding permutation π = (1 2 · · · n)σ.

For the Motzkin path in Figure 1,

P17,5 = UHDHUUHHDHUUDDHHD.

From the strip decomposition, we get the parameter set

{(2, 1), (8, 5), (12, 7), (13, 12), (16, 14)}.

The canonical reduced decomposition is

(s2s1)(s8s7s6s5)(s12s11s10s9s8s7)(s13s12)(s16s15s14). (3.3)
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1 2 5 6 7 8 9 10 11 12 13 14 15 16

7 8 9 12 13 14

14

14

(0,0)

Figure 1: The (x + y)-labelling and strip decomposition.

The corresponding permutation is

3 1 2 4 9 5 13 6 7 8 10 14 11 17 12 15 16.

Conversely, given a set of parameters {(hi, ti)|1 ≤ i ≤ k} satisfying the conditions
(3.2), we may reverse the above procedure to construct a Motzkin path. Therefore we
arrive at the following conclusion.

Theorem 3.1 There exists a bijection φ between Mn and Sn(321, 31̄42).

For example, for the canonical reduced decomposition in (3.3), the construction of the
Motzkin path is illustrated by Figure 2.

By Lemma 2.2, we easily obtain the following theorem on the inversion number of a
permutation in Sn(321, 31̄42). We define area of a Motzkin path as the area of the region
bounded by the path and the x-axis. For a Motzkin path P , we use φ(P ) to denote the
permutation obtained from P by the above bijection.

Theorem 3.2 The area of any Motzkin path P minus the sum of y-coordinates of starting
points in all the up steps is equal to the inversion number of the permutation φ(P ) ∈
Sn(321, 31̄42).

Proof. By Lemma 2.2, the inversion number of a permutation equals the number of simple
transpositions in its canonical reduced decomposition. Given any Motzkin path P , the
canonical reduced decomposition of its corresponding permutation φ(P ) is obtained from
the labels of strips by omitting repeated labels in the same strip. However, the number of
repeated labels is exactly the y-coordinate of the starting point in each strip. Moreover,
the area of a Motzkin path equals the number of labelled cells. So the inversion number
of the permutation φ(P ) ∈ Sn(321, 31̄42) equals the area of the Motzkin path P minus
the sum of y-coordinates of starting points of all the up steps.

4. The Trapezoidal Decomposition

It is discovered by Guibert [14] that Sn(231, 41̄32) is in one-to-one correspondence with
the set of Motzkin paths of length n. The idea is to show that these two sets have the
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1 2 5 6 7 8 9 10 11 12 13 14 15 16

7 8 9 12 13 14

14

14

⇓ σ5

1 2 5 6 7 8 9 10 11 12 13

7 8 9 12 13

⇓ σ4

1 2 5 6 7 8 9 10 11 12

7 8 9

1 2
⇒
σ1 ⇒

σ2

⇓ σ3

1 2 5 6 7 8

(0,0)

(0,0)

(0,0)

(0,0)(0,0)

Figure 2: The Motzkin path from the canonical reduced decomposition.

same recursive structure. In this section, we provide a bijection based on the trapezoidal
decomposition of Motzkin paths. Let us review some basic facts.

Proposition 4.1 For n ≥ 1, the set Mn of Motzkin paths P of length n can be recursively
constructed as follows:

(i) P = QH for some Motzkin path Q of length n − 1.

(ii) P = Q1UQ2D, and we write P = Q1 ∗ Q2, for a Motzkin path Q1 of length i and a
Motzkin path Q2 of length n − i − 2. Note that the step U in the decomposition is
the last up step that touches the x-axis.

Conversely, given any Motzkin path P ∈ Mn, one can uniquely decompose it into a
shorter path by (i) or into a pair of shorter paths by (ii).

The recursive construction of Sn(231, 41̄32) can be described as follows.

the electronic journal of combinatorics 9 (2) (2003), #R15 8



Proposition 4.2 For n ≥ 2, the set of permutations θ in Sn(231, 41̄32) can be constructed
by the following recursive procedure:

(i) θ = πn for some π ∈ Sn−1(231, 41̄32).

(ii) There exist π1 ∈ Si(231, 41̄32) and π2 ∈ Sn−i−2(231, 41̄32) for some 0 ≤ i ≤ n − 2
such that

θ = π1 ∗ π2 = π1 n (i + 1) π̃2,

where π̃2 denotes the sequence obtained from π2 by adding i + 1 to every entry.

Conversely, given any permutation θ ∈ Sn(231, 41̄32), one can uniquely decompose it
into a shorter permutation by (i) or into a pair of shorter permutations by (ii).

The above recursive procedures lead to the following bijection of Guibert [14]:

Theorem 4.3 There is a bijection between Mn and Sn(231, 41̄32).

The goal of this section is to present a bijection ϕ between Mn and Sn(231, 41̄32)
in terms of reduced decompositions. A similar approach is used by Egge and Mansour
[12] for permutations related to Schröder paths. For the strip decomposition for Motzkin
paths in Section 3, the cutting point is the initial point of the last up step. In this section,
we will deal with the decomposition for which the cutting point is the initial point of
the last up step that touches the x-axis. We give a reduced decomposition based on the
previous (x + y)-labelling and the trapezoidal decomposition of Motzkin paths.

For a Motzkin path P containing at least one up step, we define the base trapezoid
as the region surrounded by the x-axis, the last up step that touches the x-axis, then
the necessary number of horizontal steps to reach the last down step, and finally the last
down step. Note that the base trapezoid has at least one label. For example, the base
trapezoid of the Motzkin path in Figure 3 has labels 6, 7, 8, 9, 10, 11, 12, 13.

• For P = ∅ or P = H H · · · H , the trapezoidal decomposition of P is the empty set.

• If P has only one up step, then the decomposition is the base trapezoid.

• If P has more than one up steps, then decompose it as P = Q1UQ2D, where Q1

and Q2 carry the labels in P . The trapezoidal decomposition of P consists of the
base trapezoid, followed by the trapezoidal decomposition of Q2 and the trapezoidal
decomposition of Q1.

Next we associate a Motzkin path P with a reduced decomposition. For each base
trapezoid with labels {i, i + 1, . . . , j} in the trapezoidal decomposition of P , we associate
it with sj sj−1 · · · si. Suppose that P has k up steps and its trapezoidal decomposition is
T1, T2, . . ., Tk. Let σi be the reduced decomposition of Ti. Then the reduced decompo-
sition σ = σ1 σ2 · · · σk is called the trapezoidal reduced decomposition of P . Finally, the
permutation obtained from P during the above process is denoted by ϕ(P ) = (12 · · ·n)σ.
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For example, in Figure 3 the Motzkin path P is

U U D H D U U U D D H U D D.

The trapezoidal reduced decomposition is σ = σ1 σ2 · · · σ6, where σ1 = s13s12s11s10s9s8s7s6,
σ2 = s13, σ3 = s10s9s8, σ4 = s10, σ5 = s4s3s2s1, σ6 = s3.

1 2 3 4 6 7 8 9 10 11 12 13

3 8 9 10 13

10

(0,0)

Figure 3: The trapezoidal reduced decomposition

By the construction of the trapezoidal reduced decompositions of Motzkin paths, we
have the following assertion.

Theorem 4.4 Let P be a Motzkin path of length n, and σ = σ1σ2 . . . σk the trapezoidal
reduced decomposition of P . Then we have ϕ(P ) = (12 · · ·n)σ ∈ Sn(231, 41̄32).

Proof. We use induction on n. For n = 1, it is clear that ϕ(H) = 1. Assume that the
statement is true for Motzkin paths of length less than n. If P ends with a horizontal
step, then there exists a unique Motzkin path Q ∈ Mn−1 such that P = QH . Observing
that sn−1 does not appear in σ1σ2 · · ·σk, we have

ϕ(QH) = (1 2 · · · n)σ = ϕ(Q) n. (4.1)

By induction, ϕ(Q) ∈ Sn−1(231, 41̄32). It follows that π = ϕ(Q) n ∈ Sn(231, 41̄32).
If P does not end with a horizontal step, we may have the decomposition P = Q1∗Q2 =

Q1UQ2D, where Q1 is a Motzkin path of length i. From the construction of the trapezoidal
reduced decomposition of P , we see that σ1 = sn−1 · · · si+1. Let σ2σ3 · · ·σk−j denote the
reduced decompositions corresponding to Q2. In the factors σ2, . . ., σk−j, the indices of si

are bigger than i+2. Thus, σ2, . . ., σk−j act only on the elements whose positions are bigger
than i + 1. Let σk−j+1σk−j+2 · · ·σk denote the reduced decompositions corresponding to
Q1, in which the indices of si are smaller than i. Therefore, σk−j+1, . . ., σk act only on
the first i elements. It follows that

ϕ(P ) = (1 2 · · · n)σ1σ2 · · ·σk

= (12 · · ·n)(sn−1 · · · si+1)(σ2 · · ·σk−j)(σk−j+1 · · ·σk)

= (1 · · · i n i + 1 i + 2 · · · n − 1)(σ2 · · ·σk−j)(σk−j+1 · · ·σk)

= (1 · · · i n i + 1 ϕ̃(Q2))(σk−j+1 · · ·σk)
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= ((1 · · · i)(σk−j+1 · · ·σk)) n i + 1 ϕ̃(Q2)

= ϕ(Q1) n i + 1 ϕ̃(Q2)

= ϕ(Q1) ∗ ϕ(Q2).

By Proposition 4.2, we have

π = ϕ(P ) = ϕ(Q1 ∗ Q2) = ϕ(Q1) ∗ ϕ(Q2) ∈ Sn(231, 41̄32).

This completes the proof.
For example, the Motzkin path in Figure 3 corresponds to the following permutation

5 1 3 2 4 14 6 10 7 9 8 11 13 12. (4.2)

By the above bijection, we obtain the following theorem on the inversion number of a
permutation in Sn(231, 41̄32).

Theorem 4.5 The area of any Motzkin path P is equal to the inversion number of the
permutation ϕ(P ) ∈ Sn(231, 41̄32).

By an inspection of the proof of Theorem 4.4, we obtain the following theorem on
the set of descents of a permutation in Sn(231, 41̄32) in connection with the tails of the
trapezoidal reduced decomposition of the corresponding Motzkin path.

Theorem 4.6 Let π be a permutation in Sn(231, 41̄32), and σ = σ1 σ2 · · · σk the trape-
zoidal reduced decomposition of the corresponding Motzkin path. Let ti be the tail of σi.
Then the set of descents of π coincides with the set {t1, t2, . . . , tk}.

For example, the set of descents of the permutation in (4.2) is

{1, 3, 6, 8, 10, 13},

which coincides with the set of tails of the trapezoidal reduced decomposition in Figure 3.
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