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Abstract. Egge and Mansour have recently studied permutations which avoid 1243 and 2143 regarding

the occurrence of certain additional patterns. Some of the open questions related to their work can easily

be answered by using permutation diagrams. As for 132-avoiding permutations the diagram approach

gives insights into the structure of {1243, 2143}-avoiding permutations that yield simple proofs for some

enumerative results concerning forbidden patterns in such permutations.

1 Introduction

Let Sn be the set of all permutations of {1, . . . , n}. Given a permutation π = π1 · · ·πn ∈ Sn

and a permutation τ = τ1 · · · τk ∈ Sk, we say that π contains the pattern τ if there is a

sequence 1 ≤ i1 < i2 < . . . < ik ≤ n such that the elements πi1πi2 · · ·πik are in the same

relative order as τ1τ2 · · · τk. Otherwise, π avoids the pattern τ , or alternatively, π is τ -

avoiding. The set of τ -avoiding permutations in Sn is denoted by Sn(τ). For an arbitrary

finite collection T of patterns we write Sn(T ) to denote the permutations of {1, . . . , n}
which avoid each pattern in T .

Egge and Mansour [2] studied permutations which avoid both 1243 and 2143. This work

was motivated by the parallels to 132-avoiding permutations. In [6, Lem. 2 and Cor. 9]

it was shown that the number of elements of Sn(1243, 2143) is counted by the (n − 1)st

Schröder number rn−1. The (large) Schröder numbers may be defined by

r0 := 1, rn := rn−1 +

n−1∑
i=0

rirn−1−i for n ≥ 1.

For this reason, the authors of [2] called the permutations which avoid 1243 and 2143

Schröder permutations; we will do this as well. (The reference to Schröder numbers may
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be somewhat inexact because there are ten inequivalent pairs (τ1, τ2) ∈ S2
4 for which

|Sn(τ1, τ2)| = rn−1, see [6, Theo. 3]. However, it is sufficient for our purposes.)

Schröder permutations are known to have a lot of properties which are analogous to

properties of 132-avoiding permutations. A look at their diagrams shows why this is so.

Given a permutation π ∈ Sn, we obtain its diagram D(π) as follows: first let π be

represented by an n × n-array with a dot in each of the squares (i, πi) (numbering from

the top left hand corner). Shadow all squares due south or due east of some dot and

the dotted cell itself. The diagram D(π) is defined as the region left unshaded after this

procedure. A square that belongs to D(π) we call a diagram square; a row (column) of

the array that contains a diagram square is called a diagram row (diagram column). (The

diagram is an important tool in the theory of the Schubert polynomial of a permutation.

Schubert polynomials were extensively developed by Lascoux and Schützenberger. See [7]

for a treatment of this work.)

By the construction, each of the connected components of D(π) is a Young diagram.

Their corners are defined to be the elements of the essential set E(π) of the permutation

π. In [4], Fulton introduced this set which together with a rank function was used as a

tool for an algebraic treatment of Schubert polynomials. For any element (i, j) ∈ E(π),

its rank is defined to be the number of dots northwest of (i, j), and is denoted by ρ(i, j).

Furthermore, by Er(π) we denote the set of all elements of E(π) whose rank equals r.

It is clear from the construction that the number of dots in the northwest is the same for

all diagram squares which are connected. Consequently, we can extend the rank function

to the set of all diagram squares. The concept should be clear from the figure.
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Figure 1 Diagram and ranked essential set of π = 9 4 8 10 3 1 7 6 2 5 ∈ S10.

It is a fundamental property of the ranked essential set of a permutation π, that it uniquely

determines π. This result was first proved by Fulton, see [4, Lem. 3.10b]; alternatively,

an algorithm for retrieving the permutation from its ranked essential set was provided in

[3]. Answering a question of Fulton, Eriksson and Linusson gave in [3] a characterization

of all ranked sets of squares that can arise as the ranked essential set of a permutation.
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To recover a permutation from its diagram is trivial: row by row, put a dot in the leftmost

shaded square such that there is exactly one dot in each column.

In [8], we used permutation diagrams to give combinatorial proofs for some enumerative

results concerning forbidden subsequences in 132-avoiding permutations. Now we develop

analogues of these bijections. In particular, we will discuss some open problems which

have been raised in [2].

The following section begins with a characterization of Schröder permutation diagrams.

Then we will give a surjection that takes any Schröder permutation to a 132-avoiding

permutation having the same number of inversions. On the other hand, a simple way

to generate all Schröder permutation diagrams from those corresponding to 132-avoiding

permutations is described.

Section 3 deals with additional restrictions on Schröder permutations. As was done for

132-avoiding permutations we will characterize from the diagram the occurrence of increas-

ing and decreasing subsequences of prescribed length, as well as of some modifications.

This yields simple combinatorial proofs for some results appearing in [2].

In the same reference a bijection between Schröder permutations and lattice paths was

given. Section 4 shows how the path can immediately be obtained from the diagram of

the corresponding permutation.

The paper ends with some remarks about potential generalizations of its results.

2 A description of Schröder permutation diagrams

By [8, Theo. 2.2], 132-avoiding permutations are precisely those permutations for which

the diagram corresponds to a partition, or equivalently, for which the rank of every element

of the essential set equals 0. More exactly, the diagram of a permutation in Sn(132) is a

Young diagram fitting in the shape (n−1, n−2, . . . , 1), that is, whose ith row is of length

at most n− i. Analogously, we can characterize the elements of Sn(1243, 2143).

Theorem 2.1 A permutation π ∈ Sn is a Schröder permutation if and only if every

element of its essential set is of rank at most 1.

Proof. If there exists an element (i, j) ∈ E(π) (or equivalently, any diagram square (i, j))

with ρ(i, j) ≥ 2 then, by definition, at least two dots appear in the northwest of (i, j), say

in the rows i1 < i2. Obviously, the subsequence πi1πi2πiπi3 is of type 1243 (represented in

the following figure) or 2143 where πi3 = j:
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On the other hand, it is clear from the construction that the occurrence of a pattern 1243

or 2143 in a permutation yields a diagram corner of rank at least 2. 2

We wish to describe more precisely the diagrams that arise as the diagram of a Schröder

permutation. First we state two elementary properties of permutation diagrams.

Lemma 2.2 Let π ∈ Sn be an arbitrary permutation.

a) We have i + j ≤ n + r for each (i, j) ∈ Er(π).

b) Let (i, j) be a diagram square of rank 1 for which (i − 1, j) and (i, j − 1) do not

belong to D(π). Then πi−1 = j − 1. Furthermore, for any element (i, j) ∈ E1(π)

there exists no square (i′, j′) ∈ E(π) with i′ < i and j′ < j.

Proof. a) Let (i, j) ∈ E(π) be of rank r. Then exactly r indices k < i satisfy πk < j.

By construction, we have πi > j and i < π−1
j . Thus there exist i− r integers k ≤ i with

πk > j. Clearly, the number of all elements πk > j in π equals n − j. This yields the

restriction.

b) By definition, there is exactly one dot (representing a pair (i′, j′) where πi′ = j′)

northwest of (i, j). From the condition that (i, j) forms the upper left-hand corner of a

connected component of diagram squares it follows that πi−1 < j and π−1
j−1 < i. Thus we

have i′ = i− 1 and j′ = j − 1.

For the second assertion let (i, j) ∈ E1(π). Suppose that there exists a diagram corner

(i′, j′) with i′ < i and j′ < j. Obviously, (i′, j′) must be of rank 0, and by the first part, it

is different from (i− 1, j − 1). Thus (i′, j′) is a corner of the Young diagram formed from

the diagram squares that are connected with (1, 1). Hence πi′+1 ≤ j′ and π−1
j′+1 ≤ i′. (Note

that i′ + 1 < i and j′ + 1 < j; otherwise (i, j) is not a diagram square.) Consequently,

there are two dots northwest of (i, j), contradicting that (i, j) ∈ E1(π). 2

Remark 2.3 Condition a) is a part of Eriksson’s and Linusson’s characterization of

ranked essential sets, see [3, Theo. 4.1].

In the case of Schröder permutations, the second claim of b) means: there are no diagram

corners (i, j) and (i′, j′) such that i′ < i and j′ < j. By [4, Prop. 9.6], this is just the
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property that characterizes vexillary permutations. Fulton’s description is an important

example of characterization classes of permutations by the shape of their essential set.

He gave a set of sufficient conditions that all except for one are also necessary. Later,

Eriksson and Linusson strengthened that condition to obtain a set of necessary and suf-

ficient conditions. Note that vexillary permutations can alternatively be characterized as

2143-avoiding ones, see [7, (1.27)]. Of course, every Schröder permutation is vexillary.

Consequently, we can answer the question: when is a subset of the n2 squares of {1, . . . , n}2
the essential set of a Schröder permutation in Sn? In particular, this yields a further

combinatorial interpretation of Schröder numbers.

Proposition 2.4 For s ≥ 0 let i1 ≥ i2 ≥ . . . ≥ is and j1 ≤ j2 ≤ . . . ≤ js be positive

integers, and let r1, r2, . . . , rs be 0 or 1 such that

i1 − r1 > i2 − r2 > . . . > is − rs > 0 and 0 < j1 − r1 < j2 − r2 < . . . < js − rs. (1)

For any n ≥ i1+js there is a unique permutation π ∈ Sn with E(π) = {(i1, j1), . . . , (is, js)}
and ρ(ik, jk) = rk for k = 1, . . . , s. In particular, π avoids 1243 and 2143, and every

Schröder permutation arises from a unique collection of such integers.

Proof. See [4, Prop. 9.6]. The condition rk ∈ {0, 1} follows from Theorem 2.1. 2

In [3, Prop. 2.2], the condition n ≥ i1 + js has been replaced by ik + jk ≤ n + rk, for

k = 1, . . . , s.

Corollary 2.5

a) The (n − 1)st Schröder number rn−1 counts the number of triples of the integer

sequences i1 ≥ i2 ≥ . . . ≥ is > 0 and 0 < j1 ≤ j2 ≤ . . . ≤ js, and the binary

sequence r1, . . . , rs satisfying (1) and ik + jk ≤ n + rk for all k.

b) The nth Catalan number Cn counts the number of pairs of integer sequences i1 >

i2 > . . . > is > 0 and 0 < j1 < j2 < . . . < js such that ik + jk ≤ n for all k.

In particular, the number of such pairs of sequences of length s is counted by the

Narayana number N(n, s + 1).

Proof. The special case of 132-avoiding permutations (ρ(i, j) = 0 for each element (i, j)

of the essential set) in 2.4 yields b). It is well-known that |Sn(132)| = Cn = 1
n+1

(
2n
n

)
for

all n. The second result of part b) where N(n, s + 1) = 1
n

(
n
s

)(
n

s+1

)
appeared in [8, Rem.

2.6c]. 2

Some of the results of this paper are given in terms of essential sets. Therefore we will

describe first how one can retrieve a Schröder permutation from its ranked essential set.
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For Schröder permutations the retrieval algorithm due to Eriksson and Linusson simplifies

considerably and can therefore be carried out without the technical notation used in [3]

for treating the general case.

Let π ∈ Sn be a Schröder permutation, and E := E(π) its essential set. Hence E is a

subset of labeled squares in {1, 2, . . . , n}2 satisfying Proposition 2.4. Let the elements of

E be represented as white labeled squares in an n × n-array. (All squares that do not

belong to E are shaded.)

1
0

0
1

Figure 2a Ranked essential set of π = 4 7 5 2 6 3 1 ∈ S7(1243, 2143).

(1) Colour white all squares (i′, j′) with i′ ≤ i and j′ ≤ j where (i, j) ∈ E is a square

labeled with 0. In this way we obtain the connected component of all diagram squares

which are of rank 0. (Recall that the rank function can be extended to the set of all

diagram squares.)

1
0 0 0
0 0 0
0 0 0
0
0
0

1

Figure 2b All diagram squares of rank 0 are known.

(2) Put a dot in each shaded square (i, j) for which every square (i′, j′) with i′ ≤ i

and j′ ≤ j, different from (i, j), is a diagram square of rank 0. Obviously, these dots

just represent the left-to-right minima of the permutation. (A left-to-right minimum of a

permutation π is an element πi which is smaller than all elements to its left, i.e., πi < πj

for every j < i.)

1
0 0 0
0 0 0
0 0 0
0
0
0

1

s

s

s

Figure 2c All dotted squares connected with a diagram square of rank 0 are known.

(3) For each dot contained in a square (i, j), colour white all squares (i′′, j′′) with i <

i′′ ≤ i′ and j < j′′ ≤ j′ where (i′, j′) ∈ E is a square labeled with 1. By this step, all
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diagram squares of rank 1 are obtained. (Note that all squares which are situated in the

area southeast of a given dot belong to the same connected component.)

1 1
0 0 0
0 0 0
0 0 0
0
0
0

1

s

s

s

Figure 2d The diagram is completed.

(4) Row by row, if no dot exists in the row, put a dot in the leftmost shaded square such

that there is exactly one dot in each column. Now the permutation can read off from the

array.

1 1
0 0 0
0 0 0
0 0 0
0
0
0

1

s

s

s

s

s

s

s

Figure 2e The permutation π = 4 7 5 2 6 3 1 is recovered.

The following transformation explains the close connection between 132-avoiding permu-

tations and Schröder permutations.

Proposition 2.6 Let π ∈ Sn be a Schröder permutation. Let E∗(π) be the set which we

obtain from E(π) by replacing every element (i, j) ∈ E1(π) by (i − 1, j − 1) and defining

it to be of rank 0. Then E∗(π) is an essential set. In particular, E∗(π) is the essential set

of a 132-avoiding permutation.

Proof. Let E(π) = {(i1, j1), . . . , (is, js)}. We may assume that ρ(ik, jk) = 1 for any k,

otherwise the assertion is trivial. Set i′k := ik − 1, j′k := jk − 1, r′k := rk − 1 = 0, and

check Proposition 2.4 for E = E(π) ∪ {(i′k, j′k)} \ {(ik, jk)}. Evidently, all the conditions

are satisfied (we have ik − rk = i′k − r′k, jk − rk = j′k − r′k). 2

Example 2.7 Let π = 4 7 5 2 6 3 1 ∈ S7(1243, 2143). Then the transformation E(π) 7→
E∗(π) yields the essential set of σ = 6 4 5 3 2 7 1 ∈ S7(132):

1
0

0
1

0

0

0

0−→

Figure 3 On the left the diagram of π; on the right the diagram of σ.
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Let φ : Sn(1243, 2143)→ Sn be the map which takes any Schröder permutation π to the

permutation whose essential set equals E∗(π). Obviously, φ is a surjection to Sn(132).

It follows from Lemma 2.2b and the retrieval procedure that D(π) and D(φ(π)) have the

same number of squares. By [7, (1.21)], for any permutation π ∈ Sn the number of diagram

squares is equal to the number of inversions inv(π) of π. Thus we have inv(π) = inv(φ(π))

for every π ∈ Sn(1243, 2143). Furthermore, Fulton observed in [4] that a permutation

π ∈ Sn has a descent at position i if and only if there exists a diagram corner in the ith

row of the n× n-array representing π. (An integer i ∈ {1, . . . , n− 1} for which πi > πi+1

is called a descent of π ∈ Sn. The number of descents of π is denoted by des(π).) Lemma

2.2b implies that des(π) ≤ des(φ(π)) for each π ∈ Sn(1243, 2143).

The left-to-right minima of a permutation π ∈ Sn are represented by such dots (i, j) for

which (i − 1, j) or (i, j − 1) are diagram squares of rank 0. To include the case π1 = 1

we assume that (0, 1) is a diagram square of rank 0. Consequently, every left-to-right

minimum of π ∈ Sn(1243, 2143) is also such a one for φ(π).

In [8, Theo. 5.1] we have shown that the number of subsequences of type 132 in an

arbitrary permutation is equal to the sum of ranks of all diagram squares. For Schröder

permutations this value is just the number of all diagram squares of rank 1.

The conversion of the above transformation is a simple way to construct Schröder permu-

tations which contain a prescribed number of occurrences of the pattern 132.

Given the essential set of a 132-avoiding permutation σ ∈ Sn(132) (recall that E(σ) is the

corner set of a Young diagram fitting in (n− 1, n− 2, . . . , 1); all elements are of rank 0),

we replace some elements (i, j) ∈ E(σ) by (i + 1, j + 1) and increase their label by 1. It

follows from Proposition 2.4 and Lemma 2.2a that the resulting set is an essential set of

a Schröder permutation in Sn if and only if we have i + j < n for all replaced elements

(i, j).

For instance, from σ = 6 4 5 3 2 7 1 ∈ S7(132) we obtain:

0

0
0

0

1
0

0

0

0

10

0

0

0

1
0

1

10

0

1
0

1
0

0

1
1

0

1

1
1

0

π1 = σ π2 = 4753261 π3 = 6357241 π4 = 6452731 π5 = 3756241 π6 = 4752631 π7 = 6257431 π8 = 2756431

Figure 4 (All the) Schröder permutations obtained from σ.

Obviously, these are all the Schröder permutations which can be constructed in this way,

that is, whose image with respect to φ equals σ. Note that inv(σ) = 15 = inv(πi).
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Proposition 2.8 Let σ ∈ Sn(132), and let s be the number of elements (i, j) ∈ E(σ)

satisfying i+j < n. Then there exist 2s Schröder permutations π ∈ Sn for which φ(π) = σ.

Proof. This follows from the preceding discussion. 2

In [8, Cor. 3.7], we have enumerated the Young diagrams fitting in (n − 1, n − 2, . . . , 1)

according to the number of their corners in the diagonal i + j = n. The number of such

diagrams with k ≥ 0 corners (i, n − i) equals the ballot number b(n − 1, n − 1 − k) =
k+1

2n−1−k

(
2n−1−k

n

)
. Now we are interested in the distribution of corners outside that diagonal.

Proposition 2.9 Let c(n − 1, k) be the number of Young diagrams fitting in the shape

(n− 1, n− 2, . . . , 1) with k ≥ 1 corners satisfying i + j < n. Then we have

c(n− 1, k) =
n−1−k∑

i=1

i

n− i

(
n− i

k

)(
n− 1

k + i

)
.

Furthermore, there are 2n−1 such diagrams with no corner outside the diagonal i + j = n.

Proof. Consider the Young diagram as being contained in an n×n-rectangle, and consider

the lattice path from the upper right-hand to the lower left-hand corners of the rectangle

that travels along the boundary of the diagram. Defining the rectangle diagonal to be the

x-axis with origin in the lower left-hand corner, we obtain a Dyck path of length 2n, that

is, a lattice path from (0, 0) to (2n, 0) which never falls below the x-axis. (In [8], we have

noted that the lattice path resulting from the diagram of a 132-avoiding permutation

π ∈ Sn in this way is just the Dyck path corresponding to π according to a bijection

proposed by Krattenthaler in [5].) In terms of Dyck paths, a diagram corner satisfying

i + j < n means a valley at a level greater than 0 (where the x-axis marks the 0-level).

The distribution of the number of these valleys was given in [1, Sect. 6.11]. 2

The previous two propositions immediately yield an explicit description for the Schröder

numbers.

Corollary 2.10 For n ≥ 0 we have rn = 2n +
∑n−1

k=1 2kc(n, k).

Remark 2.11 Another one is rn =
∑n

k=0

(
2n−k

k

)
Cn−k where Cn = 1

n+1

(
2n
n

)
denotes the

nth Catalan number. This formula follows directly from an interpretation in terms of

lattice paths, see [10, Exc. 6.19 and 6.39].
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3 Forbidden subsequences in Schröder permutations

In this section we will demonstrate that diagrams can be used to obtain simple proofs for

enumerative results concerning certain restrictions of Schröder permutations. Most of the

numbers |Sn(1243, 2143, τ)| appearing below are known from their analytical derivation

in [2].

For the following investigation, only one case is really of interest: the essential set of

π ∈ Sn(1243, 2143) contains both elements of rank 0 and 1. If E1(π) = ∅ then π avoids

132, and that case has been treated in [8]. If there is no diagram corner of rank 0 then

we have π1 = 1, and π2 · · ·πn can be identified with a permutation in Sn−1(132). In

particular, these permutations contain as many subsequences of type 21 (inversions) as

of type 132. (Note that the number of the first equals the number of all diagram squares,

and the number of the latter counts all diagram squares of rank 1).

We start by considering increasing subsequences. In [8, Theo. 4.1b] we proved that a

permutation π ∈ Sn(132) avoids the pattern 12 · · ·k if and only if its diagram contains

(n+1−k, n−k, . . . , 1). (Recall that in the case of 132-avoiding permutations the diagram

corresponds to a Young diagram fitting in the shape (n− 1, n− 2, . . . , 1).) This condition

will be useful for Schröder permutations as well.

Theorem 3.1 Let π ∈ Sn(1243, 2143) be a Schröder permutation. Then π avoids 12 · · ·k
for any k ≥ 1 if and only if φ(π) avoids 12 · · ·k.

Proof. We may assume that the essential set E(π) contains at least one element, say

(i, j), of rank 1; otherwise the assertion is trivial. The proof of 2.6 implies that the set

E ′(π) := E(π)∪{(i−1, j−1)}\{(i, j)} is the essential set of a Schröder permutation again.

The rank of (i − 1, j − 1) is defined as 0. (Successive application of this transformation

yields the set E∗(π) stated in Proposition 2.6.) Now we consider which consequences for

the corresponding permutation result from this transformation.

Let σ ∈ Sn(1243, 2143) such that E(σ) = E ′(π). Then σ differs from π at exactly three

positions. Let πi1 be the element represented by the only dot to the northwest of (i, j).

Furthermore let πi2 = j. Then we have σi = πi1 , σi2 = πi, σi1 = πi2 , and σk = πk for

all k, different from i, i1, i2. The proof of this fact follows from the retrieval procedure

given in Section 2. (For a better understanding it is helpful to consider simultaneously
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the example following the proof.)

1) The element πi1 is a left-to-right minimum of π. All the squares due north or due

west of the dot (i1, πi1) are diagram squares of rank 0. Let i′ be the smallest integer

greater than i1 such that a corner of rank 0 appears in row i′. (If such a corner does

not exist, set i′ = ∞.) By Lemma 2.2b, we have i ≤ i′. In the array representing

σ, the square (i − 1, j − 1) forms a corner of the 0-component, and the next one

appears in row i′. Thus the dot representing σi is contained in column πi1 .

2) By the transformation, all squares (i′′, j′′) for which i1 < i′′ ≤ i and πi1 < j′′ ≤ j are

moved northwestwards. Let j′ be the column index of the corner of rank 0 which

appears in row i1 − 1. (Note that for i1 > 1 such a one has to exist since πi1 is

a left-to-right minimum. For i1 = 1 set j′ = ∞.) By Lemma 2.2b again, we have

j ≤ j′. Hence in the array of σ the square (i1, j) is dotted.

3) Now all dots (i′, σi′) with i′ ≤ i are fixed. It follows from the construction that these

dots are just (i′, πi′) if i′ 6= i1, i. Since all diagram squares south of row i appear at

the same position in D(σ), the only possible position for the missing dot in row i2 is

(i2, πi). For all other indices k we have σk = πk. (Note that πi > πi1 and πi > πi2 .)

Consequently, if π contains any increasing subsequence of length k, the permutation σ

contains such a sequence as well, and vice versa: by definition and step 2), the elements

πi1 and σi1 are left-to-right minima of π and σ, respectively. If these elements occur in

an increasing subsequence then they occur as the first term. Obviously, all the elements

πi1+1, . . . , πi−1 are greater than πi2 (= σi1). Furthermore we have πk < πi2 for k =

i+1, . . . , i2−1. (Note that there exists no diagram square in the area southeast of (i, j).)

Thus, and since πi1 < πi2 < πi, each increasing subsequence in πi1πi1+1 · · ·πi2 corresponds

to an increasing subsequence of the same length in σi1σi1+1 · · ·σi2 .

Using the arguments successively (until the permutation φ(π) is obtained) proves the

assertion of the theorem. 2

Example 3.2 For π = 5 9 8 10 4 2 6 7 3 1 ∈ S10(1243, 2143) we obtain the essential set

E(π) = {(9, 1), (8, 3), (5, 3), (4, 4), (4, 7), (2, 8)} where (4, 7) is of rank 1. Replacing this

element yields the essential set of σ = 7 9 8 5 4 2 6 10 3 1 ∈ S10(1243, 2143) as shown in

Figure 5.

The pattern considered now is closely related to the increasing subsequences. In the

special case of 132-avoiding permutations the following characterization is identical with

[8, Theo. 4.1c].
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0
0

0

1

1

1

0
0

0

1
0

1

s

s

s

s

s

s

−→

Figure 5 On the left the diagram of π; on the right the diagram of σ. Only the given
dots change their position.

Theorem 3.3 Let π ∈ Sn(1243, 2143) be a Schröder permutation. Then π avoids 213 · · ·k
if and only if every element (i, j) ∈ E(π) satisfies i + j ≥ n + 3− k + ρ(i, j).

Proof. Let (i, j) ∈ E(π). The n dots representing π are arranged as follows (the labels are

the numbers of dots contained in the displayed regions where r := ρ(i, j)):

2
or

r

rr i − r

j − r 0

0 i

j 0

If there is no corner (i, j′) such that j < j′ (see the left-hand picture) then for all elements

πk with k > i and πk > j we have πk > πi. Clearly, πi+1 < πi. On the other hand,

if there exists such a corner (i, j′) (see the right-hand picture; necessarily, ρ(i, j) = 0

and ρ(i, j′) = 1) then the dot northwest of (i, j′) is contained in column j + 1, otherwise

Lemma 2.2b fails to hold. (Note that this dot marks an inner corner of the 0-component.)

In this case, all elements πk with k > i and πk > j satisfy πk > j + 1. Clearly, πi+1 ≤ j.

In both cases the elements represented by dots in the lower right-hand region appear in

increasing order since π is 2143-avoiding. If i + j < n + 3− k + ρ(i, j) then their number

n− (i + j) + ρ(i, j) is at least k − 2.

To prove the converse, suppose that every element of the essential set satisfies the above

condition. Then we have πi + i > n + 3− k for all i ∈ D(π). Hence for each descent i of

π there exist at most k − 3 elements πj with j > i and πj > πi. Since π is 2143-avoiding

these elements form an increasing sequence. Thus there is no pattern 2134 · · ·k in π. 2

Now we are in the position to answer the first of a collection of open problems raised in

[2]. Theorem 6.5 of this reference implies the Wilf-equivalence of {1243, 2143, 12 · · ·k}
and {1243, 2143, 213 · · ·k}, that is, |Sn(1243, 2143, 12 · · ·k)| = |Sn(1243, 2143, 213 · · ·k)|
for all n and k. The authors asked for a combinatorial proof of this fact. There is a simple

bijection in terms of diagrams whose essence was already used to prove the analogue for

132-avoiding permutations.
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Corollary 3.4 There is a bijection ω : Sn(1243, 2143)→ Sn(1243, 2143) such that for all

k ≥ 1 and any permutation π ∈ Sn(1243, 2143), we have that π avoids 12 · · ·k if and only

if ω(π) avoids 213 · · ·k.

Proof. Let π ∈ Sn(1243, 2143) be a Schröder permutation which avoids 12 · · ·k. By

Theorem 3.1 and [8, Theo. 4.1b], the diagram of φ(π) ∈ Sn(132) contains (n + 1− k, n−
k, . . . , 1). Since all the corners of (n+1−k, n−k, . . . , 1) are on the diagonal i+j = n+2−k

we have i + j ≥ n + 2 − k + 2ρ(i, j) for all (i, j) ∈ E(π). Hence the diagram corners of

rank 1 satisfy the condition of Theorem 3.3 anyway. Thus every diagram corresponding

to a 12 · · ·k-avoiding Schröder permutation is uniquely determined by its corners outside

the shape (n + 1 − k, n − k, . . . , 1), that is, by all corners except for those satisfying

i + j = n + 2 − k. Consequently, the diagram of ω(π) we define to be this one whose

corners are the corners of D(π) which are not contained in (n+1−k, n−k, . . . , 1). Ranks

are kept up.

Conversely, given any Schröder permutation σ ∈ Sn(1243, 2143) all of whose diagram

corners satisfy i + j ≥ n + 3− k + ρ(i, j) we construct the permutation ω−1(σ) as follows:

let E be the corner set of the diagram obtained as the union of D(φ(σ)) and (n+1−k, n−
k, . . . , 1). (Note that this is a Young diagram since D(φ(π)) is such a one.) Then we form

the essential set of ω−1(σ) from the pairs (i, j) ∈ E for which (i + 1, j + 1) /∈ E1(σ), and

all elements of E1(σ). The first are defined to be of rank 0, while the latter have rank 1.

Obviously, the resulting set is an essential set of a 12 · · ·k-avoiding Schröder permutation.

2

Example 3.5 The maximum length of an increasing subsequence in the Schröder permu-

tation π = 4631572 ∈ S7(1243, 2143) equals 3. Taking k = 4, we obtain ω(π) = 1634572:

10

0

1

1

1

←→

Figure 6 Construction of ω(π): the corners crossed out satisfy i + j = n + 2− k.

Remarks 3.6

a) Since E1(π) = E1(ω(π)) for all π ∈ S(1243, 2143, 12 · · ·k) the map ω takes any

132-avoiding permutation to a permutation which avoids 132 as well. Indeed, the

restriction of ω on S(132, 12 · · ·k) is precisely the bijection given in [8, Cor. 4.4]

that proves the Wilf-equivalence of {132, 12 · · ·k} and {132, 213 · · ·k}.
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b) It is clear from the construction that a 12 · · ·k-avoiding Schröder permutation also

avoids 213 · · ·k if and only if it is a fixed point of ω. The essential set of such

a permutation can be constructed as follows: consider the corner set of a Young

diagram which contains (n + 1 − k, n − k, . . . , 1), and fits in (n − 1, n − 2, . . . , 1).

Now replace at least all elements (i, j) by (i + 1, j + 1) for which i + j = n + 2− k.

Some further corners can be replaced if these satisfy i + j < n. The rank of all new

corners is set as 1; let the others be of rank 0.

We will discuss the enumerative consequence only for k = 3.

Corollary 3.7 |Sn(1243, 2143, 123, 213)| = 2n−1 for all n ≥ 1.

Proof. Taking up again the idea of the previous remark, the diagram of a Schröder

permutation π ∈ Sn(1243, 2143) which avoids both 123 as 213 arises from a Young diagram

that contains (n−2, n−3, . . . , 1), and fits in (n−1, n−2, . . . , 1). Clearly, each such Young

diagram is uniquely determined by its corners in the diagonal i + j = n. In particular,

there are 2n−1 diagrams of this kind. (This implies |Sn(132, 123)| = 2n−1; see [9, Prop. 7]

for another proof.)

From the corner set of each Young diagram the essential set of only one permutation

π ∈ Sn(1243, 2143, 123, 213) can be generated because all the corners (i, n − 1− i) must

be replaced, but all the corners (i, n− i) must not be replaced. 2

Remark 3.8 To obtain a {132, 123, 213}-avoiding permutation in the way described in

the proof, the Young diagram must not have any corner on the diagonal i + j = n − 1.

We can identify such a diagram by a binary sequence of length n− 1 whose ith element

is defined as 1 (or 0) if (i, n − i) is a corner (or not). The condition that there is no

diagram corner outside the diagonal i + j = n means that the corresponding sequence

contains no consecutive zeros. The number of such sequences is known to be equal to the

(n + 1)st Fibonacci number Fn+1. (The Fibonacci numbers are defined by F1 = F2 = 1

and Fn = Fn−1 + Fn−2 for n ≥ 3.) The result |Sn(132, 123, 213)| = Fn+1 already appears

in [9, Prop. 15].

The next result deals with the occurrence of decreasing subsequences of length k in

Schröder permutations. The analogue for 132-avoiding permutations is simple: a per-

mutation π ∈ Sn(132) avoids k(k − 1) · · ·1 if and only if |E(π)| ≤ k − 2, see [8, Theo.

4.1a]. Now the condition is somewhat more difficult.

To state it, we first set some notation. For a permutation π ∈ Sn we denote by r(π) and
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c(π) the number of rows and columns, respectively, that contain a diagram corner. As

mentioned above, we have r(π) = des(π), and c(π) = des(π−1). (Note that the transpose

of D(π) is just the diagram of π−1.) It follows from Proposition 2.4 that any diagram row

(column) contains at most two corners (necessarily of different rank) if π ∈ Sn(1243, 2143).

Let r2(π) and c2(π) be the number of diagram rows and diagram columns, respectively,

containing two corners.

Theorem 3.9 Let π ∈ Sn(1243, 2143) be a Schröder permutation. Then π avoids k(k −
1) · · ·1 if and only if one of the following conditions holds:

(i) r(π) ≤ k − 2 or c(π) ≤ k − 2;

(ii) r(π) = k − 1, r2(π) = c2(π) = 1, and there is no element (i, j) ∈ E(π) that such

both row i and column j contain another corner.

Proof. Suppose that π contains a decreasing subsequence of length k. Obviously, its

inverse contains such a sequence as well. Consequently, both π and π−1 must have at

least k − 1 descents, that is, r(π) ≥ k − 1 and c(π) ≥ k − 1. Now let r(π) = k − 1 and

r2(π) = c2(π) = 1. (Then we also have c(π) = k − 1.)

r

r

r

r

0

1

0 1

i1

i2

i3

If the essential corners are arranged as in the picture opposite (where

i2 6= i3) we have πi1 > πi1+1, πi2 > πi2+1 (corners correspond to descents)

but πi1 < πi2 , and πi1+1 < πi2+1. The last relation follows from the fact

that (i2, πi2 + 1) is a diagram square by the construction. If its rank was

0 then

r2 > 1. Since des(π) = k − 1 there is no decreasing subsequence of length k in π which

contradicts the assumption. In the second case (corners (i1, j2), (i2, j1) of rank 0, corners

(i1, j3), (i3, j1) of rank 1 where i1 < i2 < i3 and j1 < j2 < j3) the same argument may be

used.

On the other hand, if condition (i) holds then des(π) ≤ k − 2 or des(π−1) ≤ k − 2 and

hence π ∈ Sn(k · · · 1). If (ii) is satisfied then (as shown in the first part of the proof) π

cannot contain any decreasing subsequence of length k. 2

Here we will enumerate the permutations described in Theorem 3.9 only for k = 3. To

satisfy condition (ii) is impossible in this case. Thus a Schröder permutation is 321-

avoiding if and only if all its diagram corners are either in the same row or in the same

column. This characterization was already given in [3, Prop. 5.4] for 321-avoiding vexillary

permutations. (Note that the essential set of a vexillary permutation can contain elements

of rank greater than 1; for example, 1243 is such a permutation.)
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Egge and Mansour have shown (derived from the generating function in [2, Prop. 7.4])

that

|Sn(1243, 2143, 321)| =
(

n− 1

0

)
+

(
n− 1

1

)
+ 2

(
n− 1

2

)
+ 2

(
n− 1

3

)
for all n ≥ 1.

Their fourth problem asked for a combinatorial proof. Here it is.

Corollary 3.10 |Sn(1243, 2143, 321)| = n + 2
(

n
3

)
for all n ≥ 1.

Proof. Let π be a Schröder permutation avoiding 321. We distinguish the three cases

mentioned at the beginning of the section.

If π ∈ Sn(132) is not the identity permutation then its diagram is a rectangle whose lower

right-hand corner (i, j) satisfies i + j ≤ n. There are

n−1∑
i=1

(n− i) =

(
n

2

)

such diagrams. (The enumeration of {132, 321}-avoiding permutations was first done in

[9, Prop. 11].) If there exists no element of rank 0 in E(π), the permutation π2−1 · · ·πn−1

belongs to Sn−1(132, 321).

It remains to consider the case that D(π) has corners of rank 0 and 1. Since these squares

are in the same row or column there is exactly one corner of each rank. Without loss

of generality, we may assume that both the elements of E(π) are in the same row. (For

the result in terms of columns consider the transpose that corresponds to the inverse of

π.) Let (i, j) ∈ E0(π) and (i, j′) ∈ E1(π). From Proposition 2.4 the conditions 1 < i,

j + 1 < j′, and i + j′ ≤ n + 1 results. Given the pair (i, j), the integer j′ can be chosen

in n− i− j ways where i ∈ {2, . . . , n− 2}, and j ∈ {1, . . . , n− 1− i}. Clearly,

n−2∑
i=2

n−1−i∑
j=1

(n− i− j) =
1

2

n−3∑
i=1

i(i + 1) =

(
n− 1

3

)
.

Summarizing, we obtain |Sn(1243, 2143, 321)| = 1 +
(

n
2

)
+

(
n−1

2

)
+ 2

(
n−1

3

)
. (Note that the

term 1 stands for the identity; the factor 2 accounts for rows and columns in the third

case.) 2

The last pattern we will discuss is a special case of an important class as well. In [8,

Theo. 4.5], we characterized 132-avoiding permutations which avoid the additional pattern

s(s+1) · · · k12 · · · (s− 1) where s ∈ {2, . . . , k}, and k ≥ 3. The condition given there was

of a technical nature but for s = 2 and k = 3 it is equivalent to the following simple one:
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a permutation π ∈ Sn(132) avoids 231 if and only if all its diagram rows are of distinct

length, that means, all diagram rows contain a corner. Analogously to that, 231-avoiding

Schröder permutations can be described.

Proposition 3.11 A Schröder permutation π ∈ Sn(1243, 2143) avoids 231 if and only

if

(i) every diagram row contains exactly one element of the essential set,

(ii) and every diagram column contains at most an element of the essential set.

Proof. Suppose that π ∈ Sn(1243, 2143) contains a 231-pattern: let i1 < i2 < i3 such

that πi3 < πi1 < πi2 . Since diagram corners and permutation descents correspond to each

other, there is an integer i with i1 ≤ i < i2 such that row i contains no corner. We assume

that this row does not belong to the diagram, otherwise condition (i) fails to hold. Since

(i2, πi3) ∈ D(π) we have πi = 1, and all diagram squares appearing below the ith row are

of rank 1. By the construction, (i + 1, 2) is the upper left-hand corner of the component

which contains (i2, πi3) (and all the other diagram squares of rank 1). By Lemma 2.2b

there is no corner in the strict northwest of another one. Therefore, and since πi1 < πi2 ,

the diagram corners contained in row i− 1 and i + 1, respectively, have to be in the same

column.

For the other direction, we suppose that there is a diagram square (i1, j) for which (i1, j +

1) /∈ D(π), and a square (i2, j) ∈ E(π) with i1 < i2. (Then one of the conditions (i) and

(ii) is not satisfied.) It is easy to see that πi1πi2πi3 where πi3 = j is a subsequence of type

231. 2

From the first part of the proof, it is clear how the diagram of a 231-avoiding Schröder

permutation has to look.

Corollary 3.12 The diagram of a Schröder permutation satisfies the conditions of Propo-

sition 3.11 if and only if it is of the following shape:

s

E0

E1·

where the diagram components E0 and E1 are Young diagrams whose row lengths are each

distinct. (It may be that E0 and/or E1 are empty.)
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As an immediate consequence we can characterize 231-avoiding Schröder permutations

from their descent set.

Corollary 3.13 Let π ∈ Sn be a permutation, and D(π) the set of its descents. Then π

avoids the patterns 1243, 2143, and 231 if and only if one of the following conditions is

satisfied:

(i) s > d and D(π) = {1, 2, . . . , d};
(ii) s ≤ d and D(π) = {1, 2, . . . , s−1, s+1, s+2, . . . , d+1}, and πs−1 > πs+1 if 1 < s < n

where πs = 1 and d = des(π).

Remark 3.14 We can decide by these conditions whether a 231-avoiding Schröder per-

mutation avoids the pattern 132 in addition or not. The first condition describes all

permutations in Sn(132, 231).

Corollary 3.12 yields the answer to the third question asked by Egge and Mansour.

Corollary 3.15 For n ≥ 2 we have |Sn(1243, 2143, 231)| = (n + 2)2n−3.

Proof. Let π ∈ Sn(1243, 2143, 231). Consider the partition λ(π) whose parts are just the

lengths of the diagram rows where the length of the first row containing squares of rank 1

is listed twice. (By this information D(π) and hence π is completely described.) Adding

some zeros (if necessary), we may assume that λ = (λ1, . . . , λn−1) is of length n− 1. By

the previous discussion, we have

n > λ1 > λ2 > . . . > λi−1 ≥ λi > λi+1 > . . . > λl > λl+1 = λl+2 = . . . = λn−1 = 0

with l ∈ {0, . . . , n−1}, and λ ⊆ (n−1, n−1, n−2, . . . , 2) (where ⊆ means the containment

of the corresponding diagrams). Furthermore we have λj 6= 1 for all j if any positive part

occurs twice.

The number of partitions λ whose positive parts are all distinct is
∑n−1

l=0

(
n−1

l

)
= 2n−1

ways. (This case corresponds to 132-avoiding permutations; hence |Sn(132, 231)| = 2n−1,

see also [9, Prop. 9].) On the other hand the number of partitions which have a repeated

positive part is

n−2∑
l=1

(
n− 2

l

)(
l

1

)
= (n− 2)

n−3∑
l=0

(
n− 3

l

)
= (n− 2)2n−3.
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Note that 1 cannot be part of λ in this case. Consequently, there are 2n−1 +(n−2)2n−3 =

(n + 2)2n−3 Schröder permutations in Sn which avoid 231. 2

4 A correspondence to lattice paths

It is well-known that the nth Schröder number rn counts the number of all lattice paths

from the origin to (n, n), with steps [1, 0] (called East steps), [0, 1] (called North steps),

and [1, 1] (called Diagonal steps), that never pass below the line y = x. Such paths we

call Schröder paths. (See [10, Exc. 6.39] for further combinatorial interpretations of the

Schröder numbers.)

Egge and Mansour have given a bijection ΨEM between these paths and Schröder per-

mutations in Sn+1, see [2, Sect. 4]. Its essential property is: the number of subsequences

12 · · ·k occuring in π ∈ Sn+1(1243, 2143) can read be off (more or less) directly from the

path ΨEM(π).

This bijection can be understood as the analogue of Krattenthaler’s correspondence ΨK

between 132-avoiding permutations in Sn and lattice paths from (0, 0) to (n, n) without

diagonal steps, never passing below the line y = x. The map ΨK encodes the number of

increasing subsequences of prescribed length in the same way, see [5, (3.2)].

We pointed out in [8] that the path ΨK(π) and the diagram of a 132-avoiding permuta-

tion π are closely related to each other. Considering the diagram of π ∈ Sn(132) as being

contained in an n × n-rectangle, ΨK(π) is the lattice path which goes from the upper

right-hand corner to the lower left-hand corner of the rectangle, and travels along the

diagram boundary.

For π = 6 4 5 3 2 7 1 ∈ S7(132), for example, ΨK(π) is the lattice path displayed in bold:

Figure 7 Lattice path ΨK(6453271).

We can construct the path ΨEM just as simply from the permutation diagram.

Note again that each (Schröder) permutation is uniquely determined by its ranked es-

sential set. Consequently, the position and rank of the diagram corners are all that

we have to transfer to a path corresponding to the permutation. Since a permutation
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π ∈ Sn+1(1243, 2143) should correspond to a Schröder path from (0, 0) to (n, n), we can-

not use D(π) itself but the diagram of φ(π) is suitable. Recall that the diagram of φ(π)

is obtained from that of π by ”moving” each diagram square of rank 1 northwestwards.

Hence it is a Young diagram which is contained in (n − 1, n − 2, . . . , 1). Labeling all

corners with their original rank we have all the information needed to recover π.

Now the Schröder path corresponding to π is constructed as follows: let D(φ(π)) be em-

bedded in an (n − 1) × (n − 1)-rectangle. Analogously to the construction of ΨK , the

lattice path is defined to go from the upper right-hand corner to the lower left-hand corner

of the rectangle, along the diagram boundary, where every step sequence NE representing

a corner labeled with 0 is replaced by a step D. Finally we convert the path into the

form used in [2]. To this end, the rectangle is reflected so that the origin is placed at the

bottom left instead of at the top right.

Example 4.1 Let π = 4 7 5 2 6 3 1 ∈ S7(1243, 2143). Using the diagram of φ(π) we can

immediately determine the Schröder path corresponding to π (displayed in bold again):

1

0

0

1

1

1

(6, 6)

(0, 0)

(0, 0)

(6, 6)

−→ −→

Figure 8 Construction of the path ΨEM (π): On the left the diagram of π; in the centre
the diagram of φ(π) with plotted path; on the right the converted path.

By Lemma 2.2a, each element (i, j) ∈ E1(π) satisfies i + j ≤ n + 1. Thus, for every corner

(i′, j′) of D(φ(π)) labeled with 1 we have i′ + j′ ≤ n− 1. Therefore, and since D(φ(π)) is

contained in (n− 1, n− 2, . . . , 1), this construction indeed yields a Schröder path.

It is not difficult to see that the path obtained in this way is just ΨEM(π) for π ∈
Sn(1243, 2143) but the construction via diagram requires less effort.

In [2], the path statistic τk corresponding to the number of subsequences of type 12 · · ·k
in π ∈ Sn(1243, 2143) is defined for k ≥ 2 by

∑
s∈{E,D}

(
h(s)

k − 1

)

where h(s) denotes the height of the starting point of step s. (The height of a point (x, y)

in the plane is defined to be the difference y − x.)

Example 4.2 Consider the Schröder path NENNEDENED appearing in the previous ex-

ample. For each east and diagonal step the height is given in the picture.
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q

q q

q

q q

1

2 1

1

1 0

Figure 9 Schröder path with step heights.

Thus there occur six subsequences of type 12 (noninversions), one of type 123, and none of

type 12 · · ·k for k ≥ 4 in the corresponding permutation π = 4 7 5 2 6 3 1 ∈ S7(1243, 2143)

Remarks 4.3

a) In particular, a permutation π ∈ Sn(1243, 2143) avoids 12 · · ·k if and only if the path

ΨEM(π) has no step of height at least k − 1. This result is equivalent to Theorem

3.1.

b) Combining ΨEM : Sn(1243, 2143) → Sn−1 with the bijection ω stated in Corollary

3.4 yields the answer to the first part of the first problem raised in [2]. (By Sn−1 the

set of Schröder paths from (0, 0) to (n− 1, n− 1) is denoted.) The map ω ◦ Ψ−1
EM :

Sn−1 → Sn(1243, 2143) takes every Schröder path whose maximum step height is at

most k − 2 to a 213 · · ·k-avoiding Schröder permutation, and is bijective, of course.

c) Obviously, the path ΨEM(π) contains no diagonal step if and only if E0(π) = ∅.
As already noted, then π1 = 1 and π′ := (π2 − 1)(π3 − 1) · · · (πn − 1) belongs to

Sn−1(132). In particular, we have ΨEM(π) = ΨK(π′) in this case.

5 Perspectives

As already observed by Egge and Mansour in [2], the investigation of 132-avoiding per-

mutations and {1243, 2143}-avoiding ones, respectively, can be continued in a canonical

way. For m ≥ 3 let Tm be the set of permutations in Sm for which πm−1 = m and

πm = m − 1. For example, T3 = {132} and T4 = {1243, 2143}. Some of what we have

done for 132-avoiding permutations in [8], and for T4-avoiding permutations in this paper

can be generalized for an arbitrary integer m.

Theorem 5.1 A permutation π ∈ Sn avoids each pattern in Tm if and only if every

element of its essential set is of rank at most m− 3.

Proof. If there exists an element (i, j) ∈ E(π) with ρ(i, j) ≥ m − 2 then at least m − 2

dots appear northwest of (i, j). Consequently, there are integers i1 < i2 < . . . < im−2 < i
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for which πi1 , . . . , πim−2 < j. Furthermore, we have i < im−1 and πi > j where πim−1 = j.

Thus the subsequence πi1 · · ·πim−2πiπim−1 forms a pattern belonging to Tm. (For a better

understanding draw a picture similar to the one in the proof of Theorem 2.1.)

On the other hand, it is clear from the diagram construction that the occurrence of a

pattern of Tm in a permutation yields a diagram corner of rank at least m− 2. 2

By reasoning similar to the proof of Theorem 3.3, one can show that this theorem holds

for each m ≥ 3 if k = 3. In case k ≥ 4 and m ≥ 5, the condition i+ j ≥ n+3−k +ρ(i, j)

for all diagram corners (i, j) is only sufficient for avoiding 213 · · ·k and all the patterns of

Tm. For example, the permutation π = 5 4 7 1 3 2 6 ∈ S7(T5) avoids 2134 but the square

(1, 4) is a diagram corner of rank 0.

Suggested by computer tests, we conjecture the Wilf-equivalence of Tm ∪ {12 · · ·k} and

Tm ∪ {213 · · ·k} for all k ≥ 1 and m ≥ 3.

Conjecture 5.2 For m ≥ 3, and all n and k we have

|Sn(Tm ∪ {12 · · ·k})| = |Sn(Tm ∪ {213 · · ·k})|.

In order to study increasing subsequences in permutations which belong to Sn(Tm) it

would be nice to have a surjection Sn(Tm) → Sn(Tm−1) similar the map φ stated in

Section 2. Then the problem could successively be reduced to the case m = 3.

The map φ defined in Section 2 can be extended to all vexillary permutations. This is

because no diagram corner has another one to its northwest. For π ∈ Sn(2143), the set

E∗(π) obtained from E(π) by replacing the element (i, j) with (i− ρ(i, j), j − ρ(i, j)) and

defining it to be of rank 0 is the essential set of a 132-avoiding permutation. The extended

surjection φ′ : Sn(2143) → Sn(132) preserves both the inversion number and the length

of the longest increasing subsequence.
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