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Abstract

Let F be a probability distribution with support on the non-negative integers. A model is
proposed for generating stationary simple graphs on Z with degree distribution F and it is
shown for this model that the expected total length of all edges at a given vertex is finite if
F has finite second moment. It is not hard to see that any stationary model for generating
simple graphs on Z will give infinite mean for the total edge length per vertex if F does not
have finite second moment. Hence, finite second moment of F is a necessary and sufficient
condition for the existence of a model with finite mean total edge length.

1 Introduction

In the simplest random graph model, given a set of n vertices, an edge is drawn independently
between each pair of vertices with some probability p. This model goes back to Erdős and
Rényi (1959) and dominated the field of random graphs for decades after its introduction.
However, during the last few years there has been a growing interest in the use of random
graphs as models for various types of complex network structures, see e.g. Newman (2003)
and the references therein. In this context it has become clear that the Erdős-Rényi graph
fails to reflect a number of important features of real-life networks. For instance, an important
quantity in a random graph is the degree distribution, and, in an n-vertex Erdős-Renyi graph,
if the edge probability is scaled by 1/n, the vertex degree is asymptotically Poisson distributed.
In many real-life networks however, the degree sequence has been observed to follow a power
law, that is, the number of vertices with degree k is proportional to k−τ for some exponent
τ > 1. Hence, the Erdős-Renyi graph provides a bad model of reality at this point.

The fact that the Erdős-Renyi model cannot give other degree distributions than Poisson has
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inspired a number of new graph models that take as input a probability distribution F with
support on the non-negative integers and give as output a graph with degree distribution F .
The most well-known model in this context is the so called configuration model, formulated in
Wormald (1978) and later studied by Molloy and Reed (1995,1998) and van der Hofstad et. al.
(2005) among many others. It works so that each vertex is assigned a random number of stubs
according to the desired degree distribution F and these stubs are then paired at random to
form edges. A drawback with the configuration model is that it can give self-loops and multiple
edges between vertices, something that in most cases is not desirable in the applications. See
however Britton et. al. (2005) for modifications of the model that give simple graphs – that is,
graphs without self-loops and multiple edges – as final result. A different model for generating
graphs with given degrees is described in Chung and Lu (2002:1,2).

A natural generalization of the problem of generating a random graph with a prescribed degree
distribution is to consider spatial versions of the same problem, that is, to ask for a way to
generate edges between vertices arranged on some spatial structure so that the vertex degrees
have a certain specified distribution. This problem was introduced in Deijfen and Meester
(2006), where also a model is formulated for generating stationary graphs on Z with a given
degree distribution F . Roughly the model works so that a random number of “stubs” with
distribution F is attached to each vertex. Each stub is then randomly and indepedently of other
stubs assigned a direction, left or right, and the graph is obtained by stepwise pairing stubs
that point to each other. Under the assumption that F has finite mean, this is shown to lead
to well-defined configurations, but the expected length of the edges is infinite. It is conjectured
that, in fact, all stationary procedures for pairing stubs with random, independent directions
give connections with infinite mean. This conjecture has been proved for stub distributions F
with bounded support.

The purpose of the present paper is to formulate a model for generating stationary simple
graphs on Z with prescribed degree distribution and finite expected edge length. Just as in
Deijfen and Meester (2006) we will begin by attaching stubs to the vertices according to the
desired degree distribution and then we will look for a stationary way to pair these stubs to
create edges. The aim is to do this in such a way that multiple edges are avoided. Furthermore,
in view of the conjecture from Deijfen and Meester, if we want to achieve finite mean for the
edge length, the pairing step cannot involve giving independent directions to the stubs, but the
stubs have to be connected in a more “effective” way. For distributions with bounded support
it turns out that there is a quite simple way of doing this, while the case with unbounded
support requires a bit more work. We mention that related matching problems have been
studied for instance by Holroyd and Peres (2003,2005).

Let D ∼ F be the degree of the origin in a stationary simple graph on Z and write T for the

total length of all edges at the origin. We then have that T ≥ 2
∑⌊D/2⌋

k=1 k, where the lower
bound is attained when there is one edge to each nearest neighbor, one edge to each second

nearest neighbor, and so on. Since 2
∑⌊D/2⌋

k=1 k ≥ (D2 − 1)/4, it follows that finite second
moment of the degree distribution is a necessary condition for the possibility of generating
a stationary simple graph with finite mean total edge length per vertex. In this paper we
propose a model that indeed gives finite mean for the total edge length when E[D2] < ∞. This
establishes the following theorem.

Theorem 1.1 Let F be a probability distribution with support on the non-negative integers. It

is possible to generate a simple stationary graph on Z with degree distribution F and E[T ] < ∞
if and only if F has finite second moment.
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The rest of the paper is organized as follows. In Section 2, a model is described that works for
degree distributions with bounded support, that is, for distributions with bounded support the
expected total length of all edges at a given vertex is finite. In Section 3, this model is refined
in that vertices with high degree are treated separately. Finally in Section 4, the refined model
is shown to give finite mean for the total edge length per vertex if the degree distribution has
finite second moment.

2 A basic model

Let F be a probability distribution with support on the non-negative integers. In this section we
formulate a basic model for generating a stationary simple graph on Z with degree distribution
F . We also show that the expected length of the edges is finite if F has bounded support.

The basis for the model proposed in this section – and also for the refined model in the
following section – is a stub configuration on Z. This configuration is obtained by associating
independently to each vertex i ∈ Z a random degree Di with distribution F and then attach
Di stubs to vertex i. The question is how the stubs should be connected to create edges. As
mentioned, an important restriction is that the pairing procedure is required to be stationary.
Also, the resulting graph is not allowed to contain multiple edges between vertices.

Our first suggestion of how to join the stubs is as follows. Let Γj be the set of all vertices with
degree at least j, that is, Γj = {i ∈ Z : Di ≥ j}. Furthermore, for each vertex i, label the

stubs {si,j}
Di

j=1 and define Λj =
⋃

i∈Γj
si,j so that each vertex i ∈ Γj has exactly one stub si,j

in Λj connected to it. Stubs in Λj will be referred to as belonging to level j. The stubs in the
sets {Λj} are now connected to each other within the sets, starting with Λ1, as follows:

1. Imagine that a fair coin is tossed at the first vertex i1 ≥ 0 with degree at least 1. If the
coin comes up heads, the level 1 stub si1,1 at i1 is turned to the right and if the coin
comes up tails, the stub si1,1 is turned to the left. The other stubs in Λ1 are directed
so that, at every second vertex in Γ1, the level 1 stub points to the right and, at every
second vertex, it points to the left. Edges are then created by connecting stubs that
are pointing at each other. More precisely, a level 1 stub at vertex i pointing to the
right (left) is joined to the level 1 stub at the next vertex j > i (j < i) in Γ1 – by the
construction, this stub is pointing to the left (right).

2. The stubs in Λ2 are assigned directions analogously by letting every second stub in Λ2

point to the right and every second stub to the right, the direction of the stub at the first
vertex i2 ≥ 0 with degree at least 2 being determined by a coin toss. To avoid multiple
edges between vertices, the stubs are then connected so that a right (left) stub si,2 at
a vertex i is joined with the second left (right) stub encountered to the right (left) of i.
Since every second stub in Λ2 is pointing to the right (left), this means that si,2 is linked
to the level 2 stub at the third vertex in Γ2 to the right of i. This vertex cannot have an
edge to i from step 1, since the level 1 stub at i was connected to the first vertex in Γ1

either to the left or to the right, and Γ2 ⊂ Γ1.

...

n. In general, in step n, the stubs in Λn are connected by first randomly choosing one of the
two possible configurations where every second stub is pointing to the right and every
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second stub is pointing to the left, and then link a given stub to the nth stub pointing in
the opposite direction encountered in the direction of the stub. A level n stub at vertex i
pointing to the right (left) is hence connected to vertex number 2n− 1 to the right (left)
of i in Γn. Since Γn ⊂ Γn−1, this does not give rise to multiple edges.

...

This procedure is clearly stationary and will be referred to as the Coin Toss (CT) model. Our
first result is a formula for the expected total edge length per vertex in the CT-model. To
formulate it, write pj for the probability of the outcome j in the degree distribution F and
note that, by stationarity, the distribution of the edge length is the same at all vertices. Hence
it suffices to consider the total length T of all edges at the origin.

Proposition 2.1 In the CT-model, assume that F has bounded support and let u = max{j :
pj > 0}. Then

E[T ] = u2.

Proof: In what follows we will drop the vertex index for the degree at the origin and write
D0 = D. For j = 1, . . . , u, let Kj denote the length of the jth edge at the origin, that is,
Kj is the length of the edge created by the stub s0,j (if D < j, we set Kj = 0). Also, define
p+

j = P (D ≥ j) = 1 − F (j − 1). Then

E[T ] = E

[ u∑

j=1

Kj

]

=

u∑

j=1

p+
j E[Kj |D ≥ j].

The jth edge at the origin is equally likely to point to the right as to the left, and, by symmetry,
the expected length of the edge is the same in both cases. If the edge points to the right (left),
its other endpoint is vertex number 2j − 1 to the right (left) of the origin with degree at least
j. The distance to this vertex has a negative binomial distribution with mean (2j − 1)/p+

j ,
and it follows that

E[T ] =

u∑

n=1

2j − 1

p+
j

p+
j = 2

u∑

j=1

j − u = u2,

as desired. �

It follows from the calculations in the proof that T has infinite mean when the support of F
is unbounded and hence we have the following corollary:

Corollary 2.1 In the CT-model E[T ] < ∞ iff F has bounded support.

Roughly, the reason the CT-model gives infinite mean for T when the degrees are not bounded
is that vertices with high degree are connected to other vertices with high degree. In Section
3, a model is formulated where high degree vertices are connected in a more effective way in
order to get edges with finite mean length.
According to Corollary 2.1, the mean total edge length at the origin in the CT-model with
i.i.d. degrees is finite for degree distributions with bounded support. The following proposition
– which will be needed in the proof of Theorem 4.1 – asserts that the same result holds also
for stationary degrees.
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Proposition 2.2 Let {D′
i} be a stationary stub configuration on Z with D′

i ∼ G and connect

the stubs as in the CT-model. Then, if G has bounded support, we have E[T ] < ∞.

The proof of the proposition is based on the following lemma.

Lemma 2.1 Let {Xi}i∈Z be a {0, 1}-valued stationary process with an almost surely infinite

number of 1’s. Define τi = inf{k > i : Xk = 1} and write P (Xi = 1) = p. Then

E[τi|Xi = 1] =
1

p
.

Proof of Lemma 2.1: By stationarity, it suffices to consider i = 0. We have

E[τ0|X0 = 1] =
E[τ01{X0=1}]

p
,

where the numerator can be written as

E[τ01{X0=1}] =

∞∑

k=0

P (τ01{X0=1} > k)

=

∞∑

k=0

P (X0 = 1, X1 = 0, . . . , Xk = 0)

=
∞∑

k=0

P (X−k = 1, X−(k−1) = 0, . . . , X0 = 0)

=

∞∑

k=0

P (min{j ≥ 0 : X−j = 1} = k)

= 1.

�

Proof of Proposition 2.2: Write D′
0 = D′, let u = max{j : pj > 0}, and remember from the

proof of Proposition 2.1 that Kj denotes the length of the jth edge at the origin for j = 1, . . . , u
(if D′ < j, we set Kj = 0). Clearly we are done if we can show that E[Kj] < ∞ for all j. We
have E[Kj] = E[Kj |D′ ≥ j]p+

j , and to see that E[Kj |D′ ≥ j] is finite, define

Xj
i =

{
1 if D′ ≥ j;
0 otherwise.

The jth edge at the origin is equally likely to point to the right as to the left, and, by symmetry,
the expected length of the edge is the same in both cases. If the edge points to the right (left),
its other endpoint is vertex number 2j − 1 to the right (left) of the origin with degree at least
j. Hence E[Kj |D′ ≥ j] is the expected distance to the right of the origin until 2j − 1 1’s have

been encountered in the process {Xj
i }, given that X0 = 1. It follows from Lemma 2.1 that the

expected distance between two successive 1’s in the process is 1/p+
j , which gives the desired

result exactly as in the proof of Proposition 2.1. �
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3 A refined model

In this section we describe a model designed to give finite mean for the total edge length per
vertex for degree distribution with finite second moment. The idea is to truncate the degrees
at some high level d and connect stubs at level j ≥ d + 1 separately. The remaining stubs at
level 1, . . . , d after this has been done are then connected according to the CT-model. The
model is slightly easier to define when the degrees are almost surely non-zero, and hence, in
what follows, we will assume that P (Di ≥ 1) = 1. This means no loss of generality, since
removing vertices with degree 0 only shrinks expected edge lengths by a factor 1−P (Di = 0).

First we introduce some notation and terminology. For a fixed d ∈ N, let Dd
i be the “tail”

above level d at vertex i, that is, Dd
i = max{Di−d, 0}. Stubs at level j ≥ d+1 will be referred

to as bad and Dd
i thus indicates the number of bad stubs at vertex i. A vertex with bad stubs

on it – that is, a vertex with degree strictly larger than d – will be called high. Of course,
stubs that are not bad will be called good and vertices that are not high will be called low.
The model for connecting the stubs is based on the concept of claimed vertices:

Definition 3.1 A vertex i ∈ Z is said to be claimed on level d iff
∑i+m

k=i−m Dd
k ≥ m for some

m ≥ 1.

In words, a vertex is claimed if, either there are bad stubs on the vertex itself (this means that
a high vertex is by definition claimed), or there is a symmetric interval of width 2m + 1 for
some positive m around the vertex in which the total number of bad stubs is at least m. The
set of claimed vertices at level d will be denoted by Cd. Finally, by a cluster of claimed vertices
we mean a set of consecutive vertices i, . . . , i + n with {i, . . . , i + n} ⊂ Cd but i − 1 6∈ Cd and
i + n + 1 6∈ Cd.

The idea with these definitions is that a claimed vertex that is not high is in some sense close
to a high vertex and might therefore be used for the bad stubs at the high vertices to connect
to. Indeed, in the model that we will soon propose for connecting the stubs, bad stubs are
always connected within the claimed cluster that their vertex belongs to. To make sure that
this can be done without creating multiple edges we need to see that the total number of bad
stubs in a claimed cluster is strictly smaller than the number of vertices in the cluster. Hence,
for a given subset A of Z, let b(A) be the number of bad stubs at vertices in A, that is,

b(A) =
∑

i∈A

Dd
i .

Then the following holds:

Lemma 3.1 For each cluster C in Cd, we have b(C) ≤ |C| − 1.

Proof: Consider a given claimed cluster C = [i + 1, i + n] and assume that b(C) ≥ |C|, that
is, b(C) ≥ n. We then have for the vertex i next to the left endpoint of the cluster that

k=i+n∑

k=i−n

Dd
i ≥ b(C) ≥ n

so that hence i is claimed as well, which is a contradiction. �

We are now ready to describe the refined model. The model requires that the claimed clusters
are almost surely finite. This will indeed be the case if d is large, as follows from Proposition
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4.1 in the next section (which stipulates that the expected cluster size is finite for large d). For
now we take this for granted. Hence, fix d large enough to ensure that the clusters are finite
and, to make step 2 below easier, assume without loss of generality that d is even.

1. Bad stubs are connected within the claimed clusters. In a cluster with only one single
high vertex i, this is done by choosing a random subset of Dd

i low vertices in the cluster,
pick one stub from each of these vertices and connect to a bad stub of i. This is indeed
possible, since, by Lemma 3.1, there are at least Dd

i low vertices in the cluster (in fact,
at least 2Dd

i ) and, by assumption, there is at least one stub at each vertex. If there is
more than one high vertex in a cluster C, the bad stubs are connected as follows.

(i) Write h = h(C) for the number of high vertices in C and let these high vertices
be denoted by i1, . . . , ih (ordered from the left to the right). First we use some of
the bad stubs to create edges between high vertices: If h is even, consider the pairs
(i1, i2), . . . , (ih−1, ih) and connect the two vertices in each pair by using one bad
stub from each vertex. If h is odd, with probability 1/2, leave the last high vertex
ih out and connect the pairs (i1, i2), . . . (ih−2, ih−1), and, with probability 1/2, leave
the first high vertex i1 out and connect the pairs (i2, i3), . . . (ih−1, ih). This means
that one bad stub from each high vertex (except ih or i1) is connected if h is even
(odd). In any case, at least h − 1 bad stubs are used.

(ii) Let br(C) denote the number of remaining unconnected bad stubs in C after step
(i). By Lemma 3.1, the total number of bad stubs in C is at most |C|− 1, implying
that br(C) ≤ |C| − h, that is, the number of unconnected bad stubs in C does not
exceed the number |C| − h of low vertices. Hence, to connect the remaining bad
stubs, chose randomly br(C) low vertices, take one stub from each of these vertices
and pair these stubs randomly with the bad stubs.

2. In this step, the good stubs at the high vertices {ij} are connected to each other. Each
high vertex has d good stubs attached to it and, for a given high vertex ij, these stubs
are linked to good stubs at the vertices ij+2, . . . , ij+d/2+1 and ij−2, . . . , ij−d/2−1, that is,
half of the good stubs are pointed to the left and half of them to the right. Consecutive
high vertices might already have an edge between them from step 1(i) and therefore, to
avoid multiple edges, we do not connect ij to ij−1 or ij+1.

3. The remaining stubs at low vertices are connected according to the CT-model. There
are no edges between low vertices from the previous steps and hence multiple edges will
not arise here.

This model will be referred to as the cluster model. The next task is to show that the mean
total edge length per vertex is finite provided the degree distribution has finite second moment.

4 The mean total edge length per vertex

The truncation level d is of course important for the properties of the cluster model. Write T d

for the total length of all edges at the origin for a given value of d. The aim in this section is
to prove the following theorem.

Theorem 4.1 If F has finite second moment, then, for large d, we have E[T d] < ∞ in the

cluster model.
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A large part of the work in proving this theorem lies in showing that the expected size of a
claimed clusters is finite if d is large. Since the bad stubs are connected within the claimed
clusters, this ensures that the expected length of the edges created by the bad stubs is finite. For
technical reasons, we will need a slightly more general result. To formulate it, first generalize
the definition of a claimed vertex to incorporate a parameter α.

Definition 4.1 A vertex is α-claimed on level d iff
∑i+m

k=i−m Dd
k ≥ αm for some m ≥ 1.

Given a stub configuration {Di}i∈Z, we can now talk about clusters of α-claimed vertices. Let
Cd,α be the α-claimed cluster of the origin. Also, let µd = E[Dd

i ], that is, µd is the expected
number of stubs above level d at a given vertex. Clearly µd → 0 as d → ∞ and hence, by
picking d large, we can make µd arbitrarily small. The result concerning the expected cluster
size now runs as follows.

Proposition 4.1 Fix α > 0. If d is large enough to ensure that µd < α/18, then E
[
|Cd,α|

]
<

∞.

Proof: We will show that

{
|Cd,α| ≥ n

}
⊂
{
∃m ≥ n :

m∑

k=−m

Dd
k ≥

αm

6

}
. (1)

With D̃d
k = Dd

k − µd, this implies that

{
|Cd,α| ≥ n

}
⊂

{
∃m ≥ n :

m∑

k=−m

D̃d
k ≥

αm

6
− (2m + 1)µd

}

⊂
{
∃m ≥ n :

m∑

k=−m

D̃d
k ≥ cd,αm

}
,

where cd,α := α/6−3µd > 0 (to get the last inclusion, we have used that 2m+1 ≤ 3m). Hence

P
(
|Cd,α| ≥ n

)
≤ P

(
∃m ≥ n :

m∑

k=−m

D̃d
k ≥ cd,αm

)

= P

(
sup
m≥n

1

m

m∑

k=−m

D̃d
k ≥ cd,α

)
,

and consequently

E
[
|Cd,α|

]
≤

∞∑

n=1

P

(
sup
m≥n

( 1

m

m∑

k=−m

D̃d
k

)
≥ cd,α

)
.

By a standard result on convergence rate in the law of large numbers from Baum and Katz
(1965; Theorem 3 with t = r = 2), the sum on the right hand side is convergent iff the D̃d

k’s
have finite second moment. This proves the proposition.
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It remains to show (1). To this end, for i ∈ Cd,α, let Ii be the shortest interval around i where
the condition for i to be α-claimed is satisfied. More precisely, if

mi = inf
{
m :

i+m∑

k=i−m

Dd
k ≥ αm

}
,

we have Ii = [i − mi, i + mi]. We now claim that we can pick a subset {Iij
}ij∈Cd,α of

these intervals that completely covers the cluster (Cd,α ⊂ ∪jIij
) and where only consecutive

intervals intersect (Iij
∩ Iik

= ∅ if |j − k| ≥ 2). To construct this subsequence, let Ii1 be
the interval in {Ii}i∈Cd,α that reaches furthest to the left, that is, Ii1 is the interval with
l = inf{k : k ∈ ∪i∈Cd,αIi} as its left endpoint. If there is more than one interval in {Ii}i∈Cd,α

with l as its left endpoint, we take Ii1 to be the largest one. Next, consider the set S1 of
intervals Ik with k ∈ Cd,α that intersect Ii1 and define Ii2 to be the interval in S1 that
reaches furthest to the right. If there is more than one interval in S1 that ends at the same
maximal right endpoint, we let Ii2 be the largest of those intervals. Let S2 be the set of intervals
that intersect Ii2 . The interval Ii3 is set to be the member in S2 that reaches furthest to the
right and, as before, if there is more than one candidate, we pick the largest one. This interval
cannot intersect Ii1 , since then it would have been chosen already in the previous step when
Ii2 was defined. In general, given Ii1 , . . . , Iij

the interval Iij+1
is defined as follows.

(i) Let Sj = {Ii : i ∈ Cd,α and Ii ∩ Iij
6= ∅} and write rj = sup{k : k ∈ Sj}.

(ii) Take Iij+1
to be the largest interval in Sj with its right endpoint at the vertex rj .

We repeat this procedure until an interval Iis
whose right endpoint is outside the cluster Cd,α

is picked. The entire cluster is then covered by ∪s
j=1Iij

and, by construction, non-consecutive
intervals do not intersect, as desired.

Now let A = ∪k≥1Ii2k−1
and B = ∪k≥1Ii2k

, that is, every second interval in {Iij
} is placed

in A and every second interval is placed in B. Then A and B are both unions of mutually
disjoint intervals. Remember that b(·) denotes the number of bad stubs in a given set and note
that, by the definition of badness, for a given interval Iij

, we have b(Iij
) ≥ α|Iij

|/3. Since the
intervals in A are disjoint, it follows that b(A) ≥ α|A|/3, and similarly, b(B) ≥ α|B|/3. Hence

b(A ∪ B) ≥ max{b(A), b(B)}

≥
α

3
max{|A|, |B|}

≥
α

6
|A ∪ B|.

With m = |A ∪ B|, we have

b([−m, m]) ≥ b(A ∪ B)

≥
α

6
|A ∪ B|

=
αm

6
.

This establishes (1). �
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We are now ready to prove Theorem 4.1. The proof is based on Proposition 4.1, which ensures
that the expected length of the edges created by the bad stubs in step 1 in the description of
the cluster model is finite, and 2.2, which guarantees that the edges created in step 2 and 3
have finite mean.

Proof of Theorem 4.1: Write T d
1 , T d

2 and T d
3 for the total length of the edges created at the

origin in step 1, 2 and 3 respectively in the description of the cluster model.

First we attack T d
1 . To this end, given a stub configuration {Di}i∈Z, write Cd,α

i for the α-
claimed cluster of the vertex i. Now, T d

1 is the total length of all edges created by bad stubs at
the origin. The number of such edges is clearly smaller than the total number D of edges at the
origin and they are all connected within the claimed cluster of the origin. Hence T d

1 ≤ D|Cd,1
0 |

(the cluster model is based on α = 1). If D and |Cd,1
0 | were independent it would follow

immediately from Proposition 4.1 that E[T d
1 ] < ∞ for large d. However, D and |Cd,1

0 | are of

course not independent. To get around this, introduce a coupled degree configuration {D̂i}i∈Z

where D̂ is generated independently, while D̂i = Di for i 6= 0. Quantities based on {D̂i}i∈Z

will be equipped with a hat-symbol. We will show that

∣∣Cd,1
0

∣∣ ≤ 4D +
∣∣Ĉd,1/2

−2D

∣∣+
∣∣Ĉd,1/2

2D

∣∣. (2)

Since Ĉ
d,1/2
i is clearly independent of D for all i, this implies that

E[T d
1 ] ≤ E

[
D
(
4D +

∣∣Ĉd,1/2
−2D

∣∣+
∣∣Ĉd,1/2

2D

∣∣
)]

= 4E
[
D2
]
+ 2E [D] · E

[∣∣Ĉd,1/2
2D

∣∣
]
.

If F has finite second moment and d is large so that µd ≤ 1/36, then, by Proposition 4.1, we

have E
[∣∣Ĉd,1/2

2D

∣∣] < ∞. It follows that E[T d
1 ] is finite under the same conditions.

To establish (2), it suffices to observe that each vertex i 6∈ [−2D − 1, 2D + 1] that is claimed
for α = 1 in the original configuration {Di} is still claimed for α = 1/2 in the coupled

configuration {D̂i}. Hence, pick a vertex i with |i| ≥ 2D that is claimed for α = 1 in the
original configuration. Write Im

i = [i−m, i+m] for the smallest interval such that b(Im
i ) ≥ m

and assume that m ≥ 2D so that hence 0 ∈ Im (if this is not the case, i is obviously claimed

for α = 1 also in the coupled configuration {D̂i}, since D̂i = Di for all i 6= 0). For such i, we
have

b̂(Im
i ) ≥ b(Im

i ) − D

≥ m − D

≥ m/2,

meaning that i is claimed for α = 1/2 in {D̂i}, as desired.

Next, consider the total length T d
2 of the edges created at the origin in step 2, where good

stubs at high vertices are connected. If the origin is not high, that is, if D ≤ d, then clearly
T d

2 = 0. Hence assume that D ≥ d + 1. Then d edges will be created at the origin in step 2 –
half of them will point to the right and half of them to the left. The longest edge to the right
(left) runs to vertex number 2d + 1 to the right (left) of the origin with degree larger than or
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equal to d + 1. The distance to this vertex has a negative binomial distribution with finite
mean, and it follows that T d

2 has finite mean.

All that remains is to see that the total length T d
3 of the edges created in step 3 – when the

CT-model is applied to connect remaining stubs after steps 1 and 2 – has finite expectation.
This however is an immediate consequence of Proposition 2.2, since, if D′

i denotes the number
of stubs at vertex i that are not connected after steps 1 and 2, then D′

i ≤ d and {D′
i} is clearly

a stationary sequence.

To sum up, we have shown that E[T ] = E[T d
1 + T d

2 + T d
3 ] < ∞, as desired. �

Acknowledgement We thank Olle Häggström for giving the idea for the coin toss model.
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