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Abstract

We sharpen a bound in a theorem of Russell Lyons [4] for percolation on a tree and associated
random walk.

1 Introduction

Consider a Bernoulli percolation on a tree which assigns to every edge σ a survival probability
pσ. Russell Lyons [1] associates to this percolation an electric network defined as follows: if σ
is an edge, denote by Aσ the set of edges connecting σ to the root, including σ. Then put on
σ a resistance Rσ such that

1 +
∑
ρ∈Aσ

Rρ =
∏
ρ∈Aσ

p−1
ρ

Note that if we construct an augmented tree by adding to the original tree a vertex E that
is only connected to the root via a unit resistance, the total resistance between E and σ is
exactly

∏
ρ∈Aσ p

−1
ρ .

It is well-known that one can define a random walk associated to the electric network on the
augmented tree (see [3] for instance). If we let this random walk start from the root, the
probability that it reaches the boundary of the tree before visiting E is C/(1 + C), where C
denotes the total conductance of the network between the root and the boundary (see [4]). If
we compare with the probability that a ray survives the percolation, we have the following
result:

Theorem 1 (Lyons)

C

1 +C
≤ P (a ray survives the percolation) ≤ 2

C

1 +C
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For a proof, see [1] or [4]. The lower bound is sharp (it corresponds to the case of a tree where
each vertex has at most one child). Our aim is to prove the following refinement for the upper
bound:

Theorem 2 We have:

P (a ray survives the percolation) ≤ 1− e−2C

and this inequality is optimal.

As in [4], the inequalities are established by induction for finite trees. The key difference with
[4] is that the induction is based on the number of vertices rather than the height of the tree.
The remainder of this note is organized as follows: after recalling some basic definition, we
present a short proof of the lower bound in Theorem 1, then we establish the upper bound in
Theorem 2 and finally we show the optimality.

2 Proof of the Theorem

2.1 Preliminaries

We start by recalling some standard definitions related to the subject.
A tree is a connected, acyclic graph with a distinguished vertex called the root. A ray is a
maximal self-avoiding sequence of adjacent vertices starting from the root, and the set of rays
is called the boundary of the tree. If the tree is finite, the boundary can be identified as the
set of leaves, i.e. the set of vertices having no child. We say that a random walk on a tree
reaches the boundary if it visits all vertices of some ray.
A Bernoulli percolation on the tree is obtained by keeping or removing each edge σ indepen-
dently with probability pσ and 1− pσ respectively.
For the link between random walks and electric networks, we refer to Doyle and Snell [3].

2.2 The lower bound

We prove the lower bound of Theorem 1 using a simple method. As pointed out by Lyons,
it suffices to prove the inequality for finite trees and the general result follows by monotone
convergence. So we proceed by induction on the number of vertices of the tree. We have to
prove:

C ≤ P

1− P (1)

where C denotes the total conductance and P the percolation probability. When the tree has
two vertices, the inequality (1) is in fact an equality. Assume now that the result is established
for 1, 2, . . . , n vertices. To show it for n+ 1 vertices, we shall distinguish two cases.
First, suppose that the root has at least two children. Then we can split the tree into two
subtrees whose sole common vertex is the root, and (1) holds for both subtrees by induction.
Let C1 (resp. C2, C) denote the total conductance of the first subtree (resp. the second
subtree, the tree) and P1 (resp P2, P ) its percolation probability. Then:

C = C1 +C2 ≤
P1

1− P1
+

P2

1− P2
≤ 1− (1− P1)(1− P2)

(1− P1)(1− P2)
=

P

1− P
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We now treat the case when the root has only one child. Consider the tree obtained by
removing the root and keeping the same survival probability for each edge. Then we get the
electric network associated to this new tree by multiplying all the resistances of the first tree
by p, where p is the survival probability of the edge adjacent to the root. Let C1 (resp. C)
denote the total conductance of the little tree (resp. the total tree) and P1 (resp. P ) denote
its percolation probability. The induction formula (1) yields:

C1 ≤
P1

1− P1

On the other hand,
1

C
=

1

pC1
+

1− p
p

We deduce:

C ≤ 1

1/p− 1 + (1− P1)/pP1
=

pP1

1− pP1
=

P

1− P

2.3 The upper bound

Next, we show the majoration of Theorem 2. As in the preceding proof, we consider only finite
trees and proceed by induction on the number of vertices. We also distinguish the two cases.
First suppose that the root has at least two children. Then with the same notations as above,
we get immediately:

P = 1− (1− P1)(1− P2) ≤ 1− e−2(C1+C2) = 1− e−2C

If the root has only one child, the induction formula yields:

P ≤ p(1− e−2C1) (2)

But we also have:

C1 =
C

p(1 + C)−C

Hence (2) becomes:

P ≤ p
(

1− exp

(
−2C

p(1 + C)−C

))
It suffices now to establish the following inequality for every C ≥ 0 and every p ∈ [C/(1+C), 1]:

p

(
1− exp

(
−2C

p(1 + C)−C

))
≤ 1− e−2C (3)

Fix C ≥0 and define the function f by:

f(p) = 1− exp(−2C) − p
(

1− exp

(
−2C

p(1 +C)− C

))
Then f(1) = 0,

f ′(1) = −1 + exp(−2C) + 2C(1 +C) exp(−2C) ≤ 0
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because e2C ≥ 1 + 2C + 2C2, and finally the second derivative equals

f ′′(p) =
4C3(1 +C) exp(−2C/(p(1 +C)− C))

(p(1 + C)−C)4
≥ 0

so that the function is convex. Thus f(p) ≥ 0 for p ∈ [C/(1 +C), 1], which proves (3), and the
upper bound of Theorem 2 is established.

2.4 Optimality

It remains to prove that the upper bound is sharp. To this end, fix a conductance C and
consider the critical branching process Z with binomial offspring distribution B(2, 1/2) and
initial population 1. Its variance σ2 equals 1/2. Put t = 1/Cσ2. It is well-known (see for
instance Athreya-Ney [1], p. 19) that:

Pn = P (Z[nt] > 0) ∼ 2

[nt]σ2
∼ 2

ntσ2
=

2C

n

Consider now a branching process Y (n) with the same offspring distribution and initial popu-
lation n. Then:

Qn = P (Y
(n)
[nt] > 0) = 1− (1− Pn)n → 1− e−2C

This branching process is associated to a Bernoulli percolation on a tree of height [nt] + 1
where the root has n children, any other vertex has 2 children, the survival probability is 1
for the edges at height 1 and 1/2 for the other edges. The percolation probability of this
tree is Qn. As the resistance of an edge is 2m−1 − 2m−2 at level m ≥ 2 and zero at level
1, straightforward calculations show that the total conductance is (nt/[nt])C. Since Qn →
1− e−2C and (nt/[nt])C → C as n goes to infinity, we see that our majoration is sharp.
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