Brownian Motion on Compact Manifolds: Cover Time and Late Points
Yuval Peres (University of California, Berkeley)
Jay Rosen (College of Staten Island, CUNY)
Abstract
Let $M$ be a smooth, compact, connected Riemannian manifold of dimension $d>2$ and without boundary. Denote by $T(x,r)$ the hitting time of the ball of radius $r$ centered at $x$ by Brownian motion on $M$. Then, $C_r(M)=\sup_{x \in M} T(x,r)$ is the time it takes Brownian motion to come within $r$ of all points in $M$. We prove that $C_r(M)/(r^{2-d}|\log r|)$ tends to $\gamma_d V(M)$ almost surely as $r\to 0$, where $V(M)$ is the Riemannian volume of $M$. We also obtain the ``multi-fractal spectrum'' $f(\alpha)$ for ``late points'', i.e., the dimension of the set of $\alpha$-late points $x$ in $M$ for which $\limsup_{r\to 0} T(x,r)/ (r^{2-d}|\log r|) = \alpha >0$.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-14
Publication Date: August 25, 2003
DOI: 10.1214/EJP.v8-139
References
- Robert B. Ash. Real analysis and probability. Academic Press, New York, 1972. MR55:8280
- Thierry Aubin. Nonlinear analysis on manifolds. Monge-AmpÃre equations, volume 252 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, 1982. MR85j:58002
- Gilles Courtois. Spectrum of manifolds with holes. J. Funct. Anal., 134(1):194-221, 1995. MR97b:58142
- Amir Dembo, Yuval Peres, Jay Rosen, and Ofer Zeitouni. Thick points for spatial Brownian motion: multifractal analysis of occupation measure. Ann. Probab., 28(1):1-35, 2000. MR2001g:60194
- Amir Dembo, Yuval Peres, Jay Rosen, and Ofer Zeitouni. Thin points for Brownian motion. Ann. Inst. H. Poincarà Probab. Statist., 36(6):749-774, 2000. MR2002k:60164
- Amir Dembo, Yuval Peres, Jay Rosen, and Ofer Zeitouni. Thick points for planar Brownian motion and the Erdos-Taylor conjecture on random walk. Acta Math., 186(2):239-270, 2001. MR2002k:60106
- A. Dembo, Y. Peres, J. Rosen and O. Zeitouni, Cover times for Brownian motion and random walks in two dimensions, Ann. Math., to appear..
- James Eells, Jr. and J. H. Sampson. Harmonic mappings of Riemannian manifolds. Amer. J. Math., 86:109-160, 1964. MR29:1603
- P. J. Fitzsimmons and Jim Pitman. Kac's moment formula and the Feynman-Kac formula for additive functionals of a Markov process. Stochastic Process. Appl., 79(1):117-134, 1999. MR2000a:60136
- H. Joyce and D. Preiss. On the existence of subsets of finite positive packing measure. Mathematika, 42(1):15-24, 1995. MR96g:28010
- Davar Khoshnevisan, Yuval Peres, and Yimin Xiao. Limsup random fractals. Electron. J. Probab., 5:no. 5, 24 pp. (electronic), 2000. MR2001a:60095
- Peter Matthews. Covering problems for Brownian motion on spheres. Ann. Probab., 16(1):189-199, 1988. MR89a:60190
- Peter Matthews. Covering problems for Markov chains. Ann. Probab., 16(3):1215-1228, 1988. MR89j:60092
- Steven Orey and S. James Taylor. How often on a Brownian path does the law of iterated logarithm fail? Proc. London Math. Soc. (3), 28:174-192, 1974. MR50:11486

This work is licensed under a Creative Commons Attribution 3.0 License.