Large Deviation Principle for a Stochastic Heat Equation With Spatially Correlated Noise
Monica Sarra (Universitat de Barcelona)
Abstract
In this paper we prove a large deviation principle (LDP) for a perturbed stochastic heat equation defined on $[0,T]\times [0,1]^d$. This equation is driven by a Gaussian noise, white in time and correlated in space. Firstly, we show the Holder continuity for the solution of the stochastic heat equation. Secondly, we check that our Gaussian process satisfies an LDP and some requirements on the skeleton of the solution. Finally, we prove the called Freidlin-Wentzell inequality. In order to obtain all these results we need precise estimates of the fundamental solution of this equation.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-39
Publication Date: July 18, 2003
DOI: 10.1214/EJP.v8-146
References
- Azencott R., Grandes d'eviations et applications, Ecole d''Et'e de Probabilit'es de Saint Flour VIII-1978, Lectures Notes in Math. 774 (1980) 1-176, Springer-Verlag, Berlin. MR:81m:58085
- Chenal F. Principes de grandes d'eviations pour des 'equations aux d'eriv'ees partielles stochastiques et applications, Th`ese de doctorat de l'Universit'e Paris 6, Paris.
- Chenal F. and Millet A. Uniform large deviations for parabolic SPDE's and applications, Stochastic Processes and their Applications 72 (1997) 161-186. MR:98m:60038
- Dalang R.C. Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e's, Electronic Journal of Probability Vol.4 (1999) 1-29. http://www.math.washington.edu/~ejpecp/EjpVol4/paper6. MR:2000b:60132
- Dalang R.C. and Frangos N.E. The stochastic wave equation in two spatial dimensions, Annals of Probabability 26-1 (1998) 187-212. MR:99c:60127
- Dembo A. and Zeitouni O. Large deviations techniques and applications, (1983) Jones and Barlett Publishers, Boston.
- Deuschel J.D. and Stroock D.W. Large deviations, Pure and Applied Mathematics, vol 137, (1989) Academic Press, Boston. MR:90h:60026
- Eidelman S.D. and Ivasisen S.D. Investigation of the Green matrix for a homogeneous parabolic boundary value problem, Trans. Moscow Math. Soc. 23 (1970) 179-242. MR:51#3697
- Franzova N. Long time existence for the heat equation with a spatially correlated noise term, Stochastic analysis and Applications 17-2 (1999) 169-190. MR:99m:35278
- Freidlin M.I. and Wentzell A.D. Random perturbation of dynamical systems, (1984) Springer-Verlag, New York. MR:85a:60064
- Friedman, A. (1964) Partial differential equations of parabolic type, (1964) Prentice-Hall, New York. MR: 31#6062
- Karczewska A. and Zabczyk J. Stochastic PDE's with function-valued solutions, to appear in Clément Ph., den Hollander F., van Neerven J., and de Pagter B. (Eds.), "Infinite-Dimensional Stochastic Analysis", Proceedings of the Colloquium of the Royal Netherlands Academy of Arts and Sciences, (1999) Amsterdam. MR:2002h:60132
- Márquez-Carreras D., Mellouk M. and Sarrá M. On stochastic partial differential equations with spatially correlated noise: smoothness of the law, Stochastic Processes and their Applications 93 (2001) 269-284. MR: 2002e:60089
- Márquez-Carreras D. and Sanz-Solé M.} Smal perturbations in a hyperbolic stochastic partial differential equation, Stochastic Processes and their Applications 68 (1997) 133-154. MR:98d:60124
- Millet A. and Morien P.L. On a stochastic wave equation in two space dimension regularity of the solution and its density, Prépublications de Mathématiques de l'Université de Paris 10 98/5.
- Millet A. and Sanz-Solé M. A stochastic wave equation in two space dimension: Smoothness of the law, Annals of Probability 27-2 (1999) 803-844. MR:2001e:60130
- Peszat S. and Zabczyk J. Stochastic evolution equations with a spatially homogeneous Wiener process, Stochastic Processes and their Applications 72 (1997) 187-204. MR:99k:60166
- Peszat S. and Zabczyk J. Nonlinear stochastic wave and heat equations, Preprint of Institut of Mathematics. Polish Academy of Sciences 584 (1998).
- Priouret P. Remarques sur les petits perturbations de syst&ecute;mes dynamiques, Séminaire de Probabilités XVI, Lecture Notes in Math. 920 (1982) 184-200, Springer, Berlin. MR:84g:58096
- Sanz-Solé M. and Sarrá M. Path properties of a class of Gaussian processes with applications to spde's, Canadian Mathematical Society, Conference Proceedings 28 (2000) 303-316. MR:2001m:60148
- Sanz-Solé M. and Sarrá M. H"older continuity for the stochastic heat equation with spatially correlated noise, Progress in Probability 52 (2002) 259-268. MR:1 958 822
- Sowers R.B. Large deviations for a reaction-diffusion equation with non-Gaussian perturbations, Annals of Probability 20 (1992) 504-537. MR:93e:60125
- Walsh J.B. An introduction to stochastic partial differential equations, École d'Été de Prob. de St-Flour XIV-1984, Lect. Notes in Math. 1180, (1986) Springer-Verlag. MR:88a:60114
- Watanabe S. Stochastic differential equation and Malliavin Calculus, Tata Institue, (1984) Springer-Verlag. MR:86b:60113

This work is licensed under a Creative Commons Attribution 3.0 License.