Ito Formula and Local Time for the Fractional Brownian Sheet
Frederi G. Viens (Purdue University)
Abstract
Using the techniques of the stochastic calculus of variations for Gaussian processes, we derive an It^{o} formula for the fractional Brownian sheet with Hurst parameters bigger than $1/2$. As an application, we give a stochastic integral representation for the local time of the fractional Brownian sheet.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-31
Publication Date: August 21, 2003
DOI: 10.1214/EJP.v8-155
References
- E. AlÃs, O. Mazet, D. Nualart (2001). Stochatic calculus with respect to Gaussian processes. Annals of probability, 29: 766-801. MR 2002g:60083
- E. AlÃs, D. Nualart (2001). Stochastic integration with respect to the fractional Brownian motion. Preprint. MR 1%20978%20896
- A. Ayache, S. LÃger and M. Pontier (2002). Drap Brownien fractionnaire. Potential Analysis, 17(1), 31-43. MR 2003i:60086
- X. Bardina, M. Jolis and C.A. Tudor (2002). Weak convergence to the fractional Brownian sheet. Preprint n?m. 06/2002, Universitat AutÃnoma de Barcelona. Math. Review number not available.
- S. Berman (1973). Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. J., 23: 69-94. MR 47:5944
- P. Carmona, L.Coutin (1998). Stochastic integration with respect to fractional Brownian motion. Preprint. Math. Review number not available.
- Cheridito, D. Nualart (2002). Stochastic integral of divergence type with respect to fBm with H in (0;1/2). Preprint. Math. Review number not available.
- L. Coutin, D. Nualart and C.A. Tudor (2001). The Tanaka formula for the fractional Brownian motion. Stoc. Proc. Appl., 94(2):301-315. MR 2002i:60108
- L. Decreusefond, A. Ustunel (1998). Stochastic analysis of the fractional Brownian motion. Potential Analysis, 10:177-214. MR 2000b:60133
- M. Dozzi (1989). Stochastic processes with a multidimensional parameter. Longman Scientific and Technical. MR 90g:60036
- T. E. Duncan, Y. Hu and B. Pasik-Duncan (2000). Stochastic calculus for fractional Brownian motion I. Theory. Siam J. Control Optim., 38(2):582-612. MR 2001g:60129
- M. Eddahbi, R. Lacayo, J.L. Sole, C.A. Tudor, J. Vives (2002). Regularity and asymptotic behaviour of the local time for the d-dimensional fractional Brownian motion with N-parameters. Preprint. Math. Review number not available.
- Y. Hu, B. Oksendal (2002). Chaos expansion of local time of fractional Brownian motions. Stoch. Analy. Appl., 20 (4): 815-837. MR 2003h:60054
- P. Imkeller (1984). Stochastic analysis and local time for (N.d)-Wiener process. Ann. Inst. Henri PoincarÃ, 20(1): 75-101. MR 86i:60194
- B.B. Mandelbrot, J.W. Van Ness. Fractional Brownian motion, fractional noises and application. SIAM Review, 10(4):422-437. MR 39:3572
- D. Nualart. Une formule d'Ità pour les martingales continues â¡ deux indices et quelques applications. Ann. Inst. Henri PoincarÃ, 20(3):251-275. MR 86a:60082
- D. Nualart (1995). Malliavin Calculus and Related Topics. Springer V. MR 96k:60130
- Y. Xiao, T. Zhang (2002). Local times of fractional Brownian sheets. Probab. Theory Relat. Fields, to appear. MR 1936017

This work is licensed under a Creative Commons Attribution 3.0 License.