Large Deviations on Moment Spaces
Abstract
In this paper we study asymptotic behavior of some moment spaces. We consider two different settings. In the first one, we work with ordinary multi-dimensional moments on the standard $m$-simplex. In the second one, we deal with the trigonometric moments on the unit circle of the complex plane. We state large and moderate deviation principles for uniformly distributed moments. In both cases the rate function of the large deviation principle is related to the reversed Kullback information with respect to the uniform measure on the integration space.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 662-690
Publication Date: July 1, 2005
DOI: 10.1214/EJP.v10-202
References
- Billingsley, Patrick. Convergence of probability measures. Second edition. Wiley Series in Probability and Statistics: Probability and Statistics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1999. MR1700749
- Bretagnolle, Jean. Formule de Chernoff pour les lois empiriques de variables à valeurs dans des espaces généraux. (French) Astérisque 68, 33-52 (1979). Math. Review number not available.
- Borwein, J. M.; Lewis, A. S. Partially-finite programming in $Lsb 1$ and the existence of maximum entropy estimates. SIAM J. Optim. 3 (1993), no. 2, 248--267. MR1215444
- Chang, Fu Chuen; Kemperman, J. H. B.; Studden, W. J. A normal limit theorem for moment sequences. Ann. Probab. 21 (1993), no. 3, 1295--1309. MR1235417
- Dette, Holger; Studden, William J. The theory of canonical moments with applications in statistics, probability, and analysis. Wiley Series in Probability and Statistics: Applied Probability and Statistics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1997. MR1468473
- Dudley, R. M. Real analysis and probability. Revised reprint of the 1989 original. Cambridge Studies in Advanced Mathematics, 74. Cambridge University Press, Cambridge, 2002. MR1932358
- Dembo, Amir; Zeitouni, Ofer. Large deviations techniques and applications. Second edition. Applications of Mathematics (New York), 38. Springer-Verlag, New York, 1998. MR1619036
- Gamboa, F.; Gassiat, E. Bayesian methods and maximum entropy for ill-posed inverse problems. Ann. Statist. 25 (1997), no. 1, 328--350. MR1429928
- Gamboa, Fabrice; Lozada-Chang, Li-Vang. Large deviations for random power moment problem. Ann. Probab. 32 (2004), no. 3B, 2819--2837. MR2078558
- Grenander, Ulf; Szegö, Gabor. Toeplitz forms and their applications. California Monographs in Mathematical Sciences University of California Press, Berkeley-Los Angeles 1958. MR0094840
- Gupta, J. C. The moment problem for the standard $k$-dimensional simplex. Sankhya Ser. A 61 (1999), no. 2, 286--291. MR1714879
- Gupta, J. C. Partial Hausdorff sequences and symmetric probabilities on finite products of ${0,1}$. Sankhya Ser. A 61 (1999), no. 3, 347--357. MR1743544
- Gupta, J. C. Completely monotone multisequences, symmetric probabilities and a normal limit theorem. Proc. Indian Acad. Sci. Math. Sci. 110 (2000), no. 4, 415--430. MR1926231
- Krein, M. G.; Nudelman, A. A. The Markov moment problem and extremal problems. Translations of Mathematical Monographs, Vol. 50. American Mathematical Society, Providence, R.I., 1977. MR1743544
- Najim, Jamal. A Cramér type theorem for weighted random variables. Electron. J. Probab. 7 (2002), no. 4, 32 pp. (electronic). MR1887624
- Skibinsky, Morris. Minimax estimation of a random probability whose first $N$ moments are known. Ann. Math. Statist. 39 1968 492--501. MR0221650
- Skibinsky, Morris. Some striking properties of binomial and beta moments. Ann. Math. Statist. 40 1969 1753--1764. MR0254899
- Shohat, J. A.; Tamarkin, J. D. The Problem of Moments. American Mathematical Society Mathematical surveys, vol. II. American Mathematical Society, New York, 1943. MR0008438
- van der Vaart, A. W. Asymptotic statistics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 1998. MR1652247

This work is licensed under a Creative Commons Attribution 3.0 License.