Distance Estimates for Poisson Process Approximations of Dependent Thinnings
Abstract
It is well known, that under certain conditions, gradual thinning of a point process on $R^d_+$, accompanied by a contraction of space to compensate for the thinning, leads in the weak limit to a Cox process. In this article, we apply discretization and a result based on Stein's method to give estimates of the Barbour-Brown distance $d_2$ between the distribution of a thinned point process and an approximating Poisson process, and evaluate the estimates in concrete examples. We work in terms of two, somewhat different, thinning models. The main model is based on the usual thinning notion of deleting points independently according to probabilities supplied by a random field. In Section 4, however, we use an alternative thinning model, which can be more straightforward to apply if the thinning is determined by point interactions.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 165-201
Publication Date: February 28, 2005
DOI: 10.1214/EJP.v10-237
References
- Barbour, A.D., Brown, T.C. Stein's method and point process approximation. Stochastic Process. Appl. 43 (1992), 9-31. MR1190904
- Barbour, A.D., Holst, L., Janson, S. Poisson Approximation. Oxford University Press, Oxford, 1992. MR1163825
- Böker, F., Serfozo, R. Ordered thinnings of point processes and random measures. Stochastic Process. Appl. 15 (1983), 113-132. MR0702486
- Brown, T.C. Position dependent and stochastic thinning of point processes. Stochastic Process. Appl. 9 (1979), 189-193. MR0548838
- Brown, T.C., Weinberg, G.V., Xia, A. Removing logarithms from Poisson process error bounds. Stochastic Process. Appl. 87 (2000), 149-165. MR1751169
- Brown, T.C., Xia, A. On metrics in point process approximation. Stochastics Stochastics Rep. 52 (1995), 247-263. MR1381671
- Brown, T.C., Xia, A. Stein's method and birth-death processes. Ann. Probab. 29 (2001), 1373-1403. MR1872746
- Daley, D.J., Vere-Jones, D. An Introduction to the Theory of Point Processes. Springer, New York, 1988. MR0950166
- Doukhan, P. Mixing. Properties and Examples. Lecture Notes in Statistics, 85. Springer, New York, 1994. MR1312160
- Dudley, R.M. Real analysis and probability. Wadsworth & Brooks/Cole, Pacific Grove, CA, 1989. MR0982264
- Jagers, P., Lindvall, T. Thinning and rare events in point processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 28 (1974), 89-98. MR0358978
- Kallenberg, O. Limits of compound and thinned point processes. J. Appl. Probability 12 (1975), 269-278. MR0391251
- Kallenberg, O. Random Measures, 4th ed. Akademie-Verlag, Berlin; Academic Press, London, 1986. MR0854102
- Kallenberg, O. Foundations of Modern Probability, 2nd ed., Springer, New York, 2002. MR1876169
- Matheron, G. Random sets and integral geometry. Wiley, New York, 1975. MR0385969
-
Rényi, A.
A characterization of Poisson processes (in Hungarian with summaries in English and Russian).
Magyar Tud. Akad. Mat. Kutató Int. Közl. 1 (1957), 519-527.
MR0094861
Translated in Selected papers of Alfréd Rényi, Vol. 1, ed. Pál Turán, Akadémiai Kiadó, Budapest, 1976. MR0421966 - Schuhmacher, D. Upper bounds for spatial point process approximations. To appear in Ann. Appl. Probab. 15 (2005), No. 1B. MR number not yet available. Preprint at http://www.math.unizh.ch/~schumi/papers/sppa.pdf
- Serfozo, R.F. Compositions, inverses and thinnings of random measures. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 37 (1977), 253-265. MR0423519
- Serfozo, R.F. Rarefactions of compound point processes. J. Appl. Probability 21 (1984), 710-719. MR0766809
- Stoyan, D., Kendall, W.S., Mecke, J. Stochastic geometry and its applications. Wiley, Chichester, 1987. MR0895588

This work is licensed under a Creative Commons Attribution 3.0 License.