One-dimensional Random Field Kac's Model: Localization of the Phases
Enza Orlandi (Dipartimento di Matematica, Universita di Roma Tre, Italy)
Pierre Picco (CPT-CNRS, UMR 6207,Luminy Marseille, France)
Maria Eulalia Vares (CBPF, Rio de Janeiro, Brasil)
Abstract
We study the typical profiles of a one dimensional random field Kac model, for values of the temperature and magnitude of the field in the region of two absolute minima for the free energy of the corresponding random field Curie Weiss model. We show that, for a set of realizations of the random field of overwhelming probability, the localization of the two phases corresponding to the previous minima is completely determined. Namely, we are able to construct random intervals tagged with a sign, where typically, with respect to the infinite volume Gibbs measure, the profile is rigid and takes, according to the sign, one of the two values corresponding to the previous minima. Moreover, we characterize the transition from one phase to the other. The analysis extends the one done by Cassandro, Orlandi and Picco in [13].
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 786-864
Publication Date: July 14, 2005
DOI: 10.1214/EJP.v10-263
References
- A. Aharony. (1978) Tricritical points in systems with
random fields.
Phys. Rev. B 18, 3318--3327 . Math Review number not available - M. Aizenman, and J. Wehr. Rounding of first order phase
transitions in systems with quenched disorder. Comm. Math. Phys.
130 489--528. (1990) MR1060388
(91e:82004)
- J.M. G. Amaro de Matos and J. F. Perez. Fluctuations in the Curie-Weiss version of the random field Ising model. J. Stat. Phys. 62, 587--608 (1991).MR1105276 (92d:82049)
- J M G Amaro de Matos, A E Patrick, and V A Zagrebnov. Random infinite volume Gibbs states for the Curie-Weiss random field Ising model. J. Stat. Phys. 66, 139--164 (1992).MR1149483 (92m:82009)
- A. Berretti. Some properties of random Ising models. J. Stat. Phys, 38, 483-496 (1985).MR0788429 (86j:82065)
- P. Bleher, J. Ruiz, and V. Zagrebnov. One-dimensional
random-field Ising model: Gibbs states and structure of ground states.
J. Stat. Phys. 84, 1077--1093
(1996).MR1412077
(97h:82039)
- T. Bodineau. Interface in a one-dimensional Ising spin system.
Stoch. Proc. Appl. 61, 1--23 (1996).MR1378846 (97b:82045) - A. Bovier, V. Gayrard and P. Picco. Distribution of
profiles for
the Kac-Hopfield model.
Comm. Math. Phys. 186 323--379 (1997). MR1462768 (98k:82089) - A. Bovier, and M. Zahradnik. The Low temperature
phase of Kac-Ising models.
J. Stat. Phys. 87, 311--332 (1997). MR1453742 (98k:82030) - J. Bricmont, and A. Kupiainen. Phase transition in the
three-dimensional
random field Ising model. Com. Math. Phys., 116, 539--572 (1988). MR0943702 (89h:82007) - D.C. Brydges. A short course on cluster expansions.
in Critical phenomena, random systems, gauge theories, ed K. Osterwalder, R. Stora, Les Houches XLlll, North Holland (1986) MR0880525 (88d:82002) R. Kotecky, D. Preiss. Cluster expansion for abstract polymer models.Comm. Math. Phys. 103 491--498 (1996). MR0832923 (87f:82007) B. Simon. The statistical mechanics of lattice gases. Vol I, Princeton University Press (1993)MR1239893 (95a:82001)
- L. Le Cam. Asymptotic
methods in statistical decision theory.
Springer-Verlag (1986).MR0856411 (88a:62004)
- M. Cassandro, E. Orlandi, and P.Picco. Typical configurations for one-dimensional random field Kac model. Ann. Prob. 27, No 3, 1414-1467 (1999). MR1733155 (2000k:82045)
- M.Cassandro, E.Orlandi,and P. Picco. Uniqueness and
global stability of the interface in a model
of phase separation. Nonlinearity 15 No. 5, 1621-1651 (2002).MR1925431 (2004a:35227) - M. Cassandro, E. Orlandi, and E. Presutti. Interfaces and typical Gibbs configurations for one-dimensional Kac potentials. Prob. Theor. Rel. Fields 96, 57-96 (1993).MR1925431 (2004a:35227)
- M. Cassandro, and E. Presutti. Phase transitions in
Ising systems with long but finite range
interactions. Markov Process, Rel. Fields, 2, 241-262 (1996).MR1414119 (98e:82029) - Y.S. Chow and H. Teicher. Probability Theory: Independence, Interchangeability, Martingales. Springer, Berlin. MR0513230 (80a:60004)
-
D.S. Fisher, J. Frohlich, and T. Spencer. The Ising model in a
random magnetic field.
J. Stat. Phys. 34, 863--870 (1984). MR0751717 (85g:82007) -
S. Friedli, C.-E. Pfister. Non-analiticity and the van der Waals
limit., J. Stat. Phys.
114, 665--734 (2004). MR2035628 (2005b:82005) - J. Imbrie. The ground states of the three-dimensional random field Ising model. Com. Math. Phys. 98, 145--176 (1985). MR0786570 (86g:82023)
- Y. Imry, and S.K. Ma. Random-field instability of the ordered state of continuous symmetry. Phys. Rev. Lett. 35, 1399--1401 (1975). Math Review number not available
-
M. Kac, G. Uhlenbeck, and P.C. Hemmer. On the van der Waals
theory of vapour-liquid equilibrium. I. Discussion of a one-dimensional
model. J. Math. Phys. 4, 216--228 (1963);
II. Discussion of the distribution functions.J. Math. Phys. 4, 229--247 (1963);
III. Discussion of the critical region. J. Math. Phys. 5, 60--74 (1964).MR0148416 (26 #5923) MR0148417 (26 #5924) MR0157692 (28 #923) -
C. Kulske. On the Gibbsian nature of the random field Kac model under
block-averaging. J. Stat. Phys. no 5/6, 991-1012 (2001).MR1858995 (2002k:82043) - J. Lebowitz, and O. Penrose. Rigorous treatment of the Van der Waals Maxwell theory of the liquid-vapour transition. J. Math. Phys. 7, 98--113 (1966). MR0187835 (32 #5280)
- J. Lebowitz, A Mazel and E. Presutti. Liquid-vapor phase transition for systems with finite-range interactions system. J. Stat. Phys. 94, no 5/6, 955-1025 (1999). MR1694123 (2000b:82015)
-
M. Ledoux, and M. Talagrand. Probability
in Banach Spaces.
Springer,
Berlin-Heidelberg-New York, (1991). MR1102015
(93c:60001)
- J. Neveu. Martingales a temps discret. Masson and C (1972).MR0402914 (53 #6728)
-
O. Penrose, and J.L. Lebowitz. Towards a rigorous molecular theory of
metastability.
in Fluctuation Phenomena ( e.W. Montroll and J.L. Lebowitz ed) North-Holland Physics Publishing (1987). MR0315747 (47 #4296) - D. Revuz, and M. Yor. Continuous Martingales and Brownian Motion. Springer Verlag (1991).MR1083357 (92d:60053)
- H. Robbins. A remark on Stirling's formula. Amer. Math.
Montlhy 62, 26--29
(1955). MR0069328
(16,1020e)
- G.C. Rota. On the foundations of the combinatorial
theory.I Theory
of Moebius functions, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 2, 340--368 (1964). MR0174487 (30 #4688)
- S.R. Salinas, and W.F. Wreszinski. On the mean field Ising
model in a random external field.
J. Stat. Phys. 41, 299--313 (1985).MR0813022 (87g:82065)
- E. Sparre Andersen. On the fluctuations of sums of
Random variables II.
Math. Scand. 2, 195--233 (1954).MR0068154 (16,839e)

This work is licensed under a Creative Commons Attribution 3.0 License.