Small-time Asymptotic Estimates in Local Dirichlet Spaces
Masanori Hino (Kyoto University)
Abstract
Small-time asymptotic estimates of semigroups on a logarithmic scale are proved for all symmetric local Dirichlet forms on $\sigma$-finite measure spaces, which is an extension of the work by Hino and Ramírez [4].
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1236-1259
Publication Date: October 7, 2005
DOI: 10.1214/EJP.v10-286
References
- L.-E. Andersson. On the representation of Dirichlet forms. Collection of articles dedicated to Marcel Brelot on the occasion of his 70th birthday. Ann. Inst. Fourier, Grenoble 25 (1975), 11-25. MR0417436 (54 #5486)
- N. Bouleau and F. Hirsch. Dirichlet forms and analysis on Wiener space. Walter de Gruyter, Berlin, 1991. MR1133391 (93e:60107)
- M. Fukushima, Y. Oshima and M. Takeda. Dirichlet forms and symmetric Markov processes. Walter de Gruyter, Berlin, 1994. MR1303354 (96f:60126)
- M. Hino and J. A. Ramírez. Small-time Gaussian behavior of symmetric diffusion semigroups. Ann. Probab. 31 (2003), 1254-1295. MR1988472 (2004f:60167)
- Z. M. Ma and M. Röckner. Introduction to the theory of (non-symmetric) Dirichlet forms. Springer, Berlin, 1992. MR1214375 (94d:60119)
- J. R. Norris. Heat kernel asymptotics and the distance function in Lipschitz Riemannian manifolds. Acta Math. 179 (1997), 79-103. MR1484769 (99d:58167)
- J. A. Ramírez. Short time asymptotics in Dirichlet spaces. Comm. Pure Appl. Math. 54 (2001), 259-293. MR1809739 (2002f:60108)
- J. P. Roth. Formule de représentation et troncature des formes de Dirichlet sur Rm. in Séminaire de Théorie du Potentiel Paris, pp. 260-274, Lecture Notes in Math. 563, Springer, Berlin, 1976. MR0588398 (58 #28571)

This work is licensed under a Creative Commons Attribution 3.0 License.