Limit Theorems for Self-Normalized Large Deviation
Abstract
Let $X, X_1, X_2, \cdots $ be i.i.d. random variables with zero mean and finite variance $\sigma^2$. It is well known that a finite exponential moment assumption is necessary to study limit theorems for large deviation for the standardized partial sums. In this paper, limit theorems for large deviation for self-normalized sums are derived only under finite moment conditions. In particular, we show that, if $EX^4<\infty$, then
$$\frac {P(S_n /V_n \geq x)}{1-\Phi(x)} = \exp\left\{ -\frac{x^3 EX^3}{3\sqrt{ n}\sigma^3} \right\} \left[ 1 + O\left(\frac{1+x}{\sqrt {n}}\right) \right], $$
for $x\ge 0$ and $x=O(n^{1/6})$, where $S_n=\sum_{i=1}^nX_i$ and $V_n= (\sum_{i=1}^n X_i^2)^{1/2}$.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1260-1285
Publication Date: November 14, 2005
DOI: 10.1214/EJP.v10-289
References
- Bentkus, V.; Bloznelis, M.; GËtze, F. A Berry-EssÃen bound for Student's statistic in the non-i.i.d. case. J. Theoret. Probab. 9 (1996), no. 3, 765--796. MR1400598 (97e:60036)
- Bentkus, V.; GËtze, F.. The Berry-Esseen bound for Student's statistic. Ann. Probab. 24 (1996), 491--503. MR1387647 (97f:62021)
- Bentkus, V.; GËtze, F.; van Zwet, W. R. An Edgeworth expansion for symmetric statistics. Ann. Statist. 25 (1997), no. 2, 851--896. MR1439326 (98k:62017)
- Chistyakov, G. P.; GËtze, F. Moderate deviations for Student's statistic. Teor. Veroyatnost. i Primenen. 47 (2003), no. 3, 415--428. MR1975426 (2004c:60140)
- Friedrich, Karl O. A Berry-Esseen bound for functions of independent random variables. Ann. Statist. 17 (1989), no. 1, 170--183. MR0981443 (90c:60015)
- GinÃ, Evarist; GËtze, Friedrich; Mason,David M. When is the Student $t$-statistic asymptotically standard normal? Ann. Probab. 25 (1997), no. 3, 1514--1531. MR1457629 (98j:60033)
- Hall, Peter. Edgeworth expansion for Student's $t$ statistic under minimal moment conditions. Ann. Probab. 15 (1987), no. 3, 920--931. MR0893906 (88j:62039)
- Hall, Peter. On the effect of random norming on the rate of convergence in the central limit theorem. Ann. Probab. 16 (1988), no. 3, 1265--1280. MR0942767 (89e:60043)
- Hall, Peter; Jing, Bing-Yi. Uniform coverage bounds for confidence intervals and Berry-Esseen theorems for Edgeworth expansion. Ann. Statist. 23 (1995), no. 2, 363--375. MR1332571 (96b:62077)
- He, Xuming; Shao, Qi-Man. On parameters of increasing dimensions. J. Multivariate Anal. 73 (2000), no. 1, 120--135. MR1766124 (2001g:62016)
- Jing, Bing-Yi; Shao, Qi-Man; Wang, Qiying. Self-normalized CramÃr-type large deviations for independent random variables. Ann. Probab. 31 (2003), no. 4, 2167--2215. MR2016616 (2004k:60069)
- Logan, B. F.; Mallows, C. L.; Rice, S. O.; Shepp, L. A. Limit distributions of self-normalized sums. Ann. Probability 1 (1973), 788--809. MR0362449 (50 #14890)
- Petrov, Valentin V. Limit theorems of probability theory. Sequences of independent random variables. Oxford Studies in Probability, 4. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995. MR1353441 (96h:60048)
- Prawitz, H.akan. Limits for a distribution, if the characteristic function is given in a finite domain. Skand. Aktuarietidskr. 1972, 138--154 (1973) MR0375429 (51 #11622)
- Putter, Hein; van Zwet, Willem R. Empirical Edgeworth expansions for symmetric statistics. Ann. Statist. 26 (1998), no. 4, 1540--1569. MR1647697 (99k:62036)
- Slavova, V. V. On the Berry-Esseen bound for Student's statistic. Stability problems for stochastic models (Uzhgorod, 1984), 355--390, Lecture Notes in Math., 1155, Springer, Berlin, 1985. MR0825335 (87i:60029)
- Shao, Qi-Man. A CramÃr type large deviation result for Student's $t$-statistic. J. Theoret. Probab. 12 (1999), no. 2, 385--398. MR1684750 (2000d:60046)
- van Zwet, W. R. A Berry-Esseen bound for symmetric statistics. Z. Wahrsch. Verw. Gebiete 66 (1984), no. 3, 425--440. MR0751580 (86h:60063)
- Wang, Qiying; Jing, Bing-Yi. An exponential nonuniform Berry-Esseen bound for self-normalized sums. Ann. Probab. 27 (1999), no. 4, 2068--2088. MR1742902 (2001c:60045)
- Wang, Qiying; Jing, Bing-Yi; Zhao, Lincheng. The Berry-Esseen bound for Studentized statistics. Ann. Probab. 28 (2000), no. 1, 511--535. MR1756015 (2001a:62011)

This work is licensed under a Creative Commons Attribution 3.0 License.