Inequalities for permanental processes
Abstract
Permanental processes are a natural extension of the definition of squared Gaussian processes. Each one-dimensional marginal of a permanental process is a squared Gaussian variable, but there is not always a Gaussian structure for the entire process. The interest to better know them is highly motivated by the connection established by Eisenbaum and Kaspi, between the infinitely divisible permanental processes and the local times of Markov processes. Unfortunately the lack of Gaussian structure for general permanental processes makes their behavior hard to handle. We present here an analogue for infinitely divisible permanental vectors, of some well-known inequalities for Gaussian vectors.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-15
Publication Date: November 18, 2013
DOI: 10.1214/EJP.v18-2919
References
- Bass, Richard F.; Eisenbaum, Nathalie; Shi, Zhan. The most visited sites of symmetric stable processes. Probab. Theory Related Fields 116 (2000), no. 3, 391--404. MR1749281
- Burton, Robert M.; Waymire, Ed. The central limit problem for infinitely divisible random measures. Dependence in probability and statistics (Oberwolfach, 1985), 383--395, Progr. Probab. Statist., 11, Birkhäuser Boston, Boston, MA, 1986. MR0899999
- Ding, Jian; Lee, James R.; Peres, Yuval. Cover times, blanket times, and majorizing measures. Ann. of Math. (2) 175 (2012), no. 3, 1409--1471. MR2912708
- Dynkin, E. B. Local times and quantum fields. Seminar on stochastic processes, 1983 (Gainesville, Fla., 1983), 69--83, Progr. Probab. Statist., 7, Birkhäuser Boston, Boston, MA, 1984. MR0902412
- Eisenbaum, Nathalie; Kaspi, Haya. On permanental processes. Stochastic Process. Appl. 119 (2009), no. 5, 1401--1415. MR2513113
- Eisenbaum, Nathalie; Kaspi, Haya. On the continuity of local times of Borel right Markov processes. Ann. Probab. 35 (2007), no. 3, 915--934. MR2319711
- Eisenbaum, Nathalie; Kaspi, Haya. A characterization of the infinitely divisible squared Gaussian processes. Ann. Probab. 34 (2006), no. 2, 728--742. MR2223956
- Fang, Zhaoben; Hu, Taizhong. Developments on ${\rm MTP}_ 2$ properties of absolute value multinormal variables with nonzero means. Acta Math. Appl. Sinica (English Ser.) 13 (1997), no. 4, 376--384. MR1489839
- Houdré, Christian. Remarks on deviation inequalities for functions of infinitely divisible random vectors. Ann. Probab. 30 (2002), no. 3, 1223--1237. MR1920106
- Johnson, Charles R.; Smith, Ronald L. Inverse $M$-matrices, II. Linear Algebra Appl. 435 (2011), no. 5, 953--983. MR2807211
- Ledoux, Michel; Talagrand, Michel. Probability in Banach spaces. Isoperimetry and processes. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 23. Springer-Verlag, Berlin, 1991. xii+480 pp. ISBN: 3-540-52013-9 MR1102015
- Marcus, Michael B.; Rosen, Jay. Markov processes, Gaussian processes, and local times. Cambridge Studies in Advanced Mathematics, 100. Cambridge University Press, Cambridge, 2006. x+620 pp. ISBN: 978-0-521-86300-1; 0-521-86300-7 MR2250510
- Sato, Ken-iti. Lévy processes and infinitely divisible distributions. Translated from the 1990 Japanese original. Revised by the author. Cambridge Studies in Advanced Mathematics, 68. Cambridge University Press, Cambridge, 1999. xii+486 pp. ISBN: 0-521-55302-4 MR1739520
- Vere-Jones, D. Alpha-permanents and their applications to multivariate gamma, negative binomial and ordinary binomial distributions. New Zealand J. Math. 26 (1997), no. 1, 125--149. MR1450811

This work is licensed under a Creative Commons Attribution 3.0 License.