On Cauchy-Dirichlet Problem in Half-Space for Linear Integro-Differential Equations in Weighted Hoelder Spaces
Henrikas Pragarauskas (Institute of Mathematics and Informatics)
Abstract
We study the Cauchy-Dirichlet problem in half-space for linear parabolic integro-differential equations. Sufficient conditions are derived under which the problem has a unique solution in weighted Hoelder classes. The result can be used in the regularity analysis of certain functionals arising in the theory of Markov processes.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1398-1416
Publication Date: December 16, 2005
DOI: 10.1214/EJP.v10-292
References
- J. M. Bony. Problem de Dirichlet et semi-groupe fortement fellerien associees a un operateur integrodifferentielle, C. R. Acad. Sci., 265 (1967), 362-364.
- M. G. Garroni and J.-L. Menaldi. Green Functions for Second Order Parabolic Integro-Differential Problems, Longman Scientific, Essex, 1992.
- D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order, Springer, New York, 1983.
- G. Gimbert and P. L. Lions. Existence and regularity results for solutions of second order elliptic integrodifferential equations. Richerce di Matematica 33 (1984), 315-358.
- R. Mikulevicius and H. Pragarauskas. On classical solutions of boundary value problems for certain nonlinear integro-differential equations. Lithuanina Math. J. 34 (1994), 275-287.
- R. Mikulevicius and H. Pragarauskas. On Cauchy-Dirichlet problem in half-space for parabolic SPDEs in weighted Hoelder spaces. Stoch. Proc. Appl. 106 (2003), 185-222.
- L. Stupelis. Solvability of thye first boundary-value problem in W_{p,0}^{2}(Omega ) for a class of integro-differential equations. Lithuanian Math. J. 14 (1974), 502-506.
-
L. Stupelis. Navier-Stokes Equations in Irregular Domains. Kluwer,
Dordrecht, 1995.

This work is licensed under a Creative Commons Attribution 3.0 License.