Random Walks on Groups and Monoids with a Markovian Harmonic Measure
Abstract
We consider a transient nearest neighbor random walk on a group $G$ with finite set of generators $S$. The pair $(G,S)$ is assumed to admit a natural notion of normal form words where only the last letter is modified by multiplication by a generator. The basic examples are the free products of a finitely generated free group and a finite family of finite groups, with natural generators. We prove that the harmonic measure is Markovian of a particular type. The transition matrix is entirely determined by the initial distribution which is itself the unique solution of a finite set of polynomial equations of degree two. This enables to efficiently compute the drift, the entropy, the probability of ever hitting an element, and the minimal positive harmonic functions of the walk. The results extend to monoids.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1417-1441
Publication Date: December 16, 2005
DOI: 10.1214/EJP.v10-293
References
- C. Aliprantis and K. Border. Infinite Dimensional Analysis: a Hitchhiker's Guide, 2nd ed. (1999) Springer-Verlag. Math. Review 2000k:46001
- A. Avez. Entropie des groupes de type fini. C. R. Acad. Sci. Paris Sér. A-B 275 (1972), 1363--1366. Math. Review 0324741
- D. Cartwright and B. Krön. Classification of 0-automatic pairs. Preprint (2004).
- Y. Derriennic. Quelques applications du théorème ergodique sous-additif. Astérisque 74 (1980), 183-201. Math. Review 82e:60013
- Y. Derriennic. Entropie, théorèmes limite et marches aléatoires. Probability measures on groups, VIII (Oberwolfach, 1985) Lecture Notes in Math. 1210 (1986), 241-284, Springer. Math. Review 89f:60076b
- E. Dynkin and M. Malyutov. Random walk on groups with a finite number of generators. Sov. Math. Dokl. 2 (1961), 399--402. Math. Review 0131904
- D. Epstein, J. Cannon, D. Holt, S. Levy, M. Paterson, and W. Thurston. Word processing in groups. (1992) Jones and Bartlett. Math. Review 93i:20036
- H. Furstenberg. Noncommuting random products. Trans. Amer. Math. Soc. 108 (1963), 377-428. Math. Review 0163345
- H. Furstenberg. Random walks and discrete subgroups of Lie groups. Advances Probab. Related Topics, Vol. 1 (1971), 1-63, Dekker. Math. Review 0284569
- M. Gromov. Hyperbolic groups. Essays in group theory. Math. Sci. Res. Inst. Publ. 8 (1987), 75-263, Springer. Math. Review 89e:20070
- Y. Guivarc'h. Sur la loi des grands nombres et le rayon spectral d'une marche aléatoire. Astérisque 74 (1980), 47-98. Math. Review 82g:60016
- R. Haring-Smith. Groups and simple languages. Trans. Amer. Math. Soc. 279 (1983), no. 1, 337-356. Math. Review 85b:20045
- G. Högnäs and A. Mukherjea. Probability measures on semigroups : convolution products, random walks, and random matrices. The University Series in Mathematics (1995), Plenum Press. Math. Review 97c:60018
- V. Kaimanovich. The Poisson formula for groups with hyperbolic properties. Ann. of Math. (2) 152 (2000), no. 3, 659-692. Math. Review 2002d:60064
- V. Kaimanovich and A. Vershik. Random walks on discrete groups: boundary and entropy. Ann. Probab. 11 (1983), no. 3, 457-490. Math. Review 85d:60024
- J.F.C. Kingman. Subadditive ergodic theory. Ann. Probab. 1 (1973), 883-909. Math. Review 0356192
- S. Lalley. Finite range random walk on free groups and homogeneous trees. Ann. Probab. 21 (1993), no. 4, 2087-2130. Math. Review 94m:60051
- S. Lalley. Random walks on regular languages and algebraic systems of generating functions. Algebraic methods in statistics and probability. Contemp. Math. 287 (2001), 201-230, Amer. Math. Soc. Math. Review 2002m:60038
- F. Ledrappier. Some asymptotic properties of random walks on free groups. Topics in probability and Lie groups: boundary theory. CRM Proc. Lect. Notes 28 (2001), 117-152, Amer. Math. Soc. Math. Review 2002g:60116
- R. Lyons. Random walks and the growth of groups. C. R. Acad. Sci., Paris, Sér. I 320 (1995), no. 11, 1361-1366. Math. Review 96e:60015
- J. Mairesse. Zero-automaticity for groups and monoids. Preprint available at http://www.liafa.jussieu.fr/~mairesse/Article (2004).
- J. Mairesse and F. Mathéus. Random walks on free products of cyclic groups. arXiv:math.PR/0509211 (2005).
- J. Mairesse and F. Mathéus. Random walks on groups with a tree-like Cayley graph. Mathematics and computer science. III. Algorithms, trees, combinatorics and probabilities. Trends Math. (2004), 445-460, Birkhäuser. Math. Review 2006a:60076
- T. Nagnibeda and W. Woess. Random walks on trees with finitely many cone types. J. Theoret. Probab. 15 (2002), no. 2, 383-422. Math. Review 2003k:60098
- S. Sawyer and T. Steger. The rate of escape for anisotropic random walks in a tree. Probab. Theory Related Fields 76 (1987), no. 2, 207-230. Math. Review 89a:60165
- P. Soardi. Limit theorems for random walks on discrete semigroups related to nonhomogeneous trees and Chebyshev polynomials. Math. Z. 200 (1989), no. 3, 313-325. Math. Review 90b:60011
- J. Stallings. A remark about the description of free products of groups. Proc. Cambridge Philos. Soc. 62 (1966), 129-134. Math. Review 0188332
- C. Takacs. Random walk on periodic trees. Electron. J. Probab. 2 (1997), no. 1, 1-16. Math. Review 97m:60101
- A. Vershik. Dynamic theory of growth in groups: Entropy, boundaries, examples. Russ. Math. Surv. 55 (2000), no. 4, 667-733. Math. Review 2001m:37019
- W. Woess. A description of the Martin boundary for nearest neighbour random walks on free products. Probability measures on groups, VIII (Oberwolfach, 1985) Lecture Notes in Math. 1210 (1986), 203-215, Springer. Math. Review 88i:60121
- W. Woess. Random walks on infinite graphs and groups. Cambridge Tracts in Mathematics 138 (2000), Cambridge University Press. Math. Review 2001k:60006

This work is licensed under a Creative Commons Attribution 3.0 License.