Mixing Time Bounds via the Spectral Profile
Ravi Montenegro (University of Massachusetts Lowell, USA)
Prasad Tetali (Georgia Institute of Technology, USA)
Abstract
On complete, non-compact manifolds and infinite graphs, Faber-Krahn inequalities have been used to estimate the rate of decay of the heat kernel. We develop this technique in the setting of finite Markov chains, proving upper and lower $L^{\infty}$ mixing time bounds via the spectral profile. This approach lets us recover and refine previous conductance-based bounds of mixing time (including the Morris-Peres result), and in general leads to sharper estimates of convergence rates. We apply this method to several models including groups with moderate growth, the fractal-like Viscek graphs, and the product group $Z_a \times Z_b$, to obtain tight bounds on the corresponding mixing times.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-26
Publication Date: January 24, 2006
DOI: 10.1214/EJP.v11-300
References
- D. Aldous and J. Fill, Reversible Markov chains and random walks on graphs, Monograph in preparation available on the web at stat-www.berkeley.edu/users/aldous/RWG/book.html.
- Martin Barlow, Thierry Coulhon, and Alexander Grigor'yan, Manifolds and graphs with slow heat kernel decay, Invent. Math. 144 (2001), 609-649. MR1833895
- Sergey G. Bobkov and Prasad Tetali, Modified log-Sobolev inequalities in discrete settings, Proc. of the ACM STOC 2003, 2003, pp.287-296.
- T. Coulhon, A. Grigor'yan, and C. Pittet, A geometric approach to on-diagonal heat kernel lower bound on groups, Ann. Inst. Fourier 51 (2001), 1763-1827. MR1871289
- E. Carlen, S. Kusuoka, and D. Stroock, Upper bounds for symmetric Markov transition functions, Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), 245-287. MR0898496
- T. Coulhon, Ultracontractivity and Nash type inequalities, J. Funct. Anal. 141 (1996), 510-539. MR1418518
- Thierry Coulhon and Laurent Saloff-Coste, Marches aléatoires nonsymétriques sur les groupes unimodulaires, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), no. 8, 627-630. MR1065425
- Thierry Coulhon and Laurent Saloff-Coste, Puissances d'un opérateur régularisant, Ann. Inst. H. Poincaré Probab. Statist. 26 (1990), no. 3, 419-436. MR1066086
- E.B. Davies, Heat kernels and spectral theory, Cambridge University Press, 1990. MR1103113
- P. Diaconis and L. Saloff-Coste, Moderate growth and random walk on finite groups, Geom. and Funct. Anal. 4 (1994), 1-34. MR1254308
- Persi Diaconis and Laurent Saloff-Coste, An application of harnack inequalities to random walk on nilpotent quotients, Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993), J. Fourier Anal. Appl., Special Issue, 1995, pp. 189-207. MR1364885
- P. Diaconis and L. Saloff-Coste, Logarithmic Sobolev inequalities for finite Markov chains, Ann. Appl. Prob. 6 (1996), 695-750. MR1410112
- P. Diaconis and L. Saloff-Coste, Nash inequalities for finite Markov chains, J. Theoret. Probab. 9 (1996), no. 2, 459-510. MR1385408
- A. Grigor'yan, Heat kernel upper bounds on a complete non-compact manifold, Revista Matemática Iberoamericana 10 (1994), 395-452. MR1286481
- L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), 1061-1083. MR0420249
- L. Gross, Logarithmic Sobolev inequalities and contractivity properties of semigroups, Lecture Notes in Mathematics, vol. 1563, Springer, 1993. MR1292277
- L. Lovász and R. Kannan, Faster mixing via average conductance, Annual ACM Symposium on theory of computing (Atlanta, GA, 1999), ACM, 1999, pp. 282-287. MR1798047
- R. Latala and K. Oleszkiewicz, Between Sobolev and Poincaré, Geometric Aspects of Functional Analysis, Lect. Notes in Math., vol. 1745, 2000, pp. 147-168. MR1796718
- G.F. Lawler and A.D. Sokal, Bounds on the L2 spectrum for Markov chains and Markov processes: a generalization of Cheeger's inequality, Trans. Amer. Math. Soc. 309 (1988), 557-580. MR0930082
- Ben Morris and Yuval Peres, Evolving sets, mixing and heat kernel bounds, Preprint. MR2120476
- J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931-954. MR0100158
- Ch. Pittet and L. Saloff-Coste, Isoperimetry, volume growth and random walks, Monograph in preparation.
- Laurent Saloff-Coste, Lectures on finite Markov chains, Lectures on Probability Theory and Statistics (P. Bernard, ed.), Lecture Notes in Mathematics, vol. 1665, Ecole d'Eté de Probabiltés de Saint-Flour XXVI, Springer, 1996. MR1490046
- A.J. Sinclair and M. R. Jerrum, Approximate counting, uniform generation and rapidly mixing Markov chains, Information and Computation 82 (1989), 93-133. MR1003059

This work is licensed under a Creative Commons Attribution 3.0 License.