Correlation Lengths for Random Polymer Models and for Some Renewal Sequences
Abstract
We consider models of directed polymers interacting with a one-dimensional defect line on which random charges are placed. More abstractly, one starts from renewal sequence on $Z$ and gives a random (site-dependent) reward or penalty to the occurrence of a renewal at any given point of $Z$. These models are known to undergo a delocalization-localization transition, and the free energy $F$ vanishes when the critical point is approached from the localized region. We prove that the quenched correlation length $\xi$, defined as the inverse of the rate of exponential decay of the two-point function, does not diverge faster than $1/F$. We prove also an exponentially decaying upper bound for the disorder-averaged two-point function, with a good control of the sub-exponential prefactor. We discuss how, in the particular case where disorder is absent, this result can be seen as a refinement of the classical renewal theorem, for a specific class of renewal sequences.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 613-636
Publication Date: May 13, 2007
DOI: 10.1214/EJP.v12-414
References
- Albeverio, Sergio; Zhou, Xian Yin. Free energy and some sample path properties of a random walk with random potential. J. Statist. Phys. 83 (1996), no. 3-4, 573--622. Math. Review 97c:82027
- Alexander, Kenneth S. The Effect of Disorder on Polymer Depinning Transitions, math.PR/0610008. Math. Review number not available.
- Alexander, Kenneth S.; Sidoravicius, Vladas. Pinning of polymers and interfaces by random potentials. Ann. Appl. Probab. 16 (2006), 636-669. Math. Review number not available.
- Asmussen, Soren. Applied probability and queues. Second edition. Applications of Mathematics (New York), 51. Stochastic Modelling and Applied Probability. Springer-Verlag, New York, 2003. xii+438 pp. ISBN: 0-387-00211-1 Math. Review 2004f:60001
- Berenhaut, Kenneth S.; Lund, Robert. Renewal convergence rates for DHR and NWU lifetimes. Probab. Engrg. Inform. Sci. 16 (2002), no. 1, 67--84. Math. Review 2002k:60181
- Biskup, Marek; den Hollander, Frank. A heteropolymer near a linear interface. Ann. Appl. Probab. 9 (1999), no. 3, 668--687. Math. Review 2001f:60107
- A. Erdelyi, W. Magnus, F. Oberhettinger, F. G. Tricomi. Higher transcendental functions. vol. II, McGraw-Hill, New York, 1953. Math. Review number not available.
- Fortuin, C. M.; Kasteleyn, P. W.; Ginibre, J. Correlation inequalities on some partially ordered sets. Comm. Math. Phys. 22 (1971), 89--103. Math. Review 46 #8607
- Giacomin, Giambattista. Random polymer models. Imperial College Press, World Scientific, London 2007. Math. Review number not available.
- Giacomin, Giambattista. Renewal convergence rates and correlation decay for homogeneous pinning models, preprint (2007). Math. Review number not available.
- Giacomin, Giambattista; Toninelli, Fabio Lucio. The localized phase of disordered copolymers with adsorption. ALEA Lat. Am. J. Probab. Math. Stat. 1 (2006), 149--180 (electronic). Math. Review 2007f:82044
- Giacomin, Giambattista; Toninelli, Fabio Lucio. Estimates on path delocalization for copolymers at selective interfaces. Probab. Theory Related Fields 133 (2005), no. 4, 464--482. Math. Review 2006m:60137
- Ismail, Mourad E. H.; May, C. Ping. Special functions, infinite divisibility and transcendental equations. Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 3, 453--464. Math. Review 80d:33005
- Kent, John. Some probabilistic properties of Bessel functions. Ann. Probab. 6 (1978), no. 5, 760--770. Math. Review 58 #18750
- Laroche, Etienne. Inégalités de corrélation sur {-1,1}^n et dans R^n (French) [Correlation inequalities on {-1,1}^n and in R^n] Ann. Inst. H. Poincaré Probab. Statist. 29 (1993), no. 4, 531--567. Math. Review 94k:82015
- Lund, Robert B.; Tweedie, Richard L. Geometric convergence rates for stochastically ordered Markov chains. Math. Oper. Res. 21 (1996), no. 1, 182--194. Math. Review 98d:60127
- Revuz, Daniel; Yor, Marc. Continuous martingales and Brownian motion. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 293. Springer-Verlag, Berlin, 1991. x+533 pp. ISBN: 3-540-52167-4. Math. Review 92d:60053
- Ney, Peter. A refinement of the coupling method in renewal theory. Stochastic Process. Appl. 11 (1981), no. 1, 11--26. Math. Review 82d:60169
- Toninelli, Fabio Lucio. Critical properties and finite-size estimates for the depinning transition of directed random polymers. J. Statist. Phys. 126 (2007), 1025-1044. Math. Review number not available.
- Widder, David Vernon. The Laplace Transform. Princeton Mathematical Series, v. 6. Princeton University Press, Princeton, N. J., 1941. x+406 pp. Math. Review 3,232d

This work is licensed under a Creative Commons Attribution 3.0 License.