Interpolation of Random Hyperplanes
Abstract
Let $\{(Z_i,W_i):i=1,\dots,n\}$ be uniformly distributed in $[0,1]^d \times \mathbb{G}(k,d)$, where $\mathbb{G}(k,d)$ denotes the space of $k$-dimensional linear subspaces of $\mathbb{R}^d$. For a differentiable function $f: [0,1]^k \rightarrow [0,1]^d$, we say that $f$ interpolates $(z,w) \in [0,1]^d \times \mathbb{G}(k,d)$ if there exists $x \in [0,1]^k$ such that $f(x) = z$ and $\vec{f}(x) = w$, where $\vec{f}(x)$ denotes the tangent space at $x$ defined by $f$. For a smoothness class ${\cal F}$ of Holder type, we obtain probability bounds on the maximum number of points a function $f \in {\cal F}$ interpolates.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1052-1071
Publication Date: August 15, 2007
DOI: 10.1214/EJP.v12-435
References
- P.-A. Absil, A. Edelman, and P. Koev. On the largest principal angle between random subspaces. Linear Algebra Appl., 414 (2006), no. 1, 288-294. MR2209246 (2006j:15071)
- E. Arias-Castro, D. L. Donoho, X. Huo, and C. Tovey. Connect-the-dots: How many random points can a regular curve pass through? Adv. in Appl. Probab., 37 (2005), no. 3, 571-603. MR2156550 (2006e:60012)
- E. Arkin, J. Mitchell, and G. Narasimhan. Resource-constrained geometric network optimization. In Proc. of ACM Symposium on Computational Geometry, Minneapolis, (1997), 307-316.
- B. Awerbuch, Y. Azar, A. Blum, and S. Vempala. New approximation guarantees for minimum-weight k-trees and prize-collecting salesmen. SIAM J. Comput., 28 (1999), no. 1, 254-262. MR1630453 (99e:68063)
- B. DasGupta, J. Hespanha, and E. Sontag. Computational complexities of honey-pot searching with local sensory information. In 2004 American Control Conference (ACC 2004), pages 2134-2138. 2004.
- D. Field, A. Hayes, and R. Hess. Contour integration by the human visual system: evidence for a local association field. Vision Research, 33(2):173-193, 1993.
- G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, third edition, 1996. MR1417720 (97g:65006)
- X. Huo, D. Donoho, C. Tovey, and E. Arias-Castro. Dynamic programming methods for `connecting the dots' in scattered point clouds. INFORMS J. Comput., 2005. To appear.
- A. N. Kolmogorov. Selected works of A. N. Kolmogorov. Vol. III, volume 27 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1993. MR1228446 (94c:01040)
- V. D. Milman and G. Schechtman. Asymptotic theory of finite-dimensional normed spaces, volume 1200 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986. With an appendix by M. Gromov. MR856576 (87m:46038)
- F. Mosteller. Fifty challenging problems in probability with solutions. Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1965. MR397810 (53 #1666)
- G. R. Shorack and J. A. Wellner. Empirical processes with applications to statistics. John Wiley & Sons Inc., New York, 1986. MR838963 (88e:60002)

This work is licensed under a Creative Commons Attribution 3.0 License.