Small Scale Limit Theorems for the Intersection LocalTimes of Brownian Motion
Narn-Rueih Shieh (National Taiwan University)
Abstract
In this paper we contribute to the investigation of the fractal nature of the intersection local time measure on the intersection of independent Brownian paths. We particularly point out the difference in the small scale behaviour of the intersection local times in three-dimensional space and in the plane by studying almost sure limit theorems motivated by the notion of average densities introduced by Bedford and Fisher. We show that in 3-space the intersection local time measure of two paths has an average density of order two with respect to the gauge function $\varphi(r)=r$, but in the plane, for the intersection local time measure of p Brownian paths, the average density of order two fails to converge. The average density of order three, however, exists for the gauge function $\varphi_p(r)=r^2[\log(1/r)]^p$. We also prove refined versions of the above results, which describe more precisely the fluctuations of the volume of small balls around these gauge functions by identifying the density distributions, or lacunarity distributions, of the intersection local times.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1-23
Publication Date: April 23, 1999
DOI: 10.1214/EJP.v4-46
References
- Bedford, T., and Fisher, A.M., Analogues of the Lebesgue density theorem for fractal sets of reals and integers. Proc. London Math. Soc.(3). 64 (1992) 95--124. Math. Review 92j:58058
- Dynkin, E.B., Additive functionals of several time--reversible Markov processes. J. Funct. Anal. 42 (1981) 64--101. Math. Review 82i:60124
- Falconer, K.J., Techniques in fractal geometry. Wiley, Chichester, 1997.
- Falconer, K.J., Wavelet transforms and order--two densities of fractals. Journ. Stat. Phys., 67 (1992) 781--793. Math. Review 93d:28015
- Falconer, K.J., and Springer, O.B., Order--two density of sets and measures with non--integral dimension. Mathematika. 42 (1995) 1--14. Math. Review 96i:28003
- Falconer, K.J., and Xiao, Y., Average densities of the image and zero set of stable processes. Stoch. Proc. Appl. 55 (1995) 271--283. Math. Review 96b:60192
- Geman, D., Horowitz, J., and Rosen, J., A local time analysis of intersections of Brownian motion in the plane. Ann. Probab. 12 (1984) 86--107. Math. Review 85m:60071
- Kallenberg, O., Random Measures. Akademie-Verlag, Berlin, 1983. Math. Review 85f:60076
- Le Gall, J.F., Sur la saucisse de Wiener et les points multiples du mouvement brownien. Ann. Probab. 14 (1986) 1219--1244. Math. Review 88e:60097
- Le Gall, J.F., The exact Hausdorff measure of Brownian multiple points I and II. In: Seminar on Stochastic Processes 1986, 107--137, Birkhäuser, Boston 1987 and Seminar on Stochastic Processes 1988, 193--197, Birkhäuser, Boston 1989. Math. Review 89a:60188 and Math. Review 90f:60139
- Le Gall, J.F., Some properties of planar Brownian motion. In: Lecture Notes in Math. Vol. 1527, Springer Verlag (New York) 1992. Math. Review 94b:60001
- Le Gall, J.F., and Taylor, S.J., The packing measure of planar Brownian motion. In: Seminar on Stochastic Processes 1986, 139--147, Birkhäuser, Boston 1987. Math. Review 89a:60189
- Leistritz, L., Ph.D. Dissertation, University of Jena (1994).
- Marstrand, J.M., Order--two density and the strong law of large numbers. Mathematika. 43 (1996) 1--22. Math. Review 97f:28022
- Mandelbrot, B.B., Measures of fractal lacunarity: Minkowski content and alternatives. In: Bandt, Graf, Zähle (Eds.), Fractal Geometry and Stochastics, 15--42, Birkhäuser (Basel) 1995. Math. Review 97d:28009
- Mattila, P., The Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambridge, 1995. Math. Review 96h:28006
- Mecke, J., Stationäre zufällige Maße auf lokalkompakten abelschen Gruppen. Zeitschr. f. Wahrsch. verw. Gebiete, 9 (1967) 36--58. Math. Review 37 #3611
- Mörters, P., Average densities and linear rectifiability of measures. Mathematika 44 (1997) 313-324. Math. Review 99c:28014
- Mörters, P., Symmetry properties of average densities and tangent measure distributions of measures on the line. Adv. Appl. Math. 21 (1998) 146--179. Math. Review 99e:28015
- Mörters, P., The average density of the path of planar Brownian motion. Stoch. Proc. Appl. 74 (1998) 133--149. Math. Review 99d:60092
- Mörters, P., and Preiss, D., Tangent measure distributions of fractal measures. Math. Ann. 312 (1998) 53--93.
- Patzschke, N., and Zähle, M., Fractional differentiation in the self--affine case IV. Random measures. Stoch. Stoch. Rep. 49 (1994) 87--98.
- Ray, D., Sojourn times and the exact Hausdorff measure of the sample paths of planar Brownian motion. Trans. Amer. Math. Soc. 108 (1963) 436--444. Math. Review 26 #3129
- Shieh, N.R., A growth condition for Brownian intersection points. In: Trends in Probability and Related Analysis, Proceedings of SAP'96, 265--272, World Scientific Singapore 1997. Math. Review 98k:60004
- Taylor, S.J., The measure theory of random fractals. Math. Proc. Camb. Phil. Soc. 100 (1986) 383--486. Math. Review 87k:60189
- Zähle, U., Self-similar random measures I. Notion, carrying Hausdorff dimension and hyperbolic distribution. Prob. Th. Rel. Fields. 80 (1988) 79--100. Math. Review 89m:28014

This work is licensed under a Creative Commons Attribution 3.0 License.