Quadratic BSDEs with Random Terminal Time and Elliptic PDEs in Infinite Dimension
Philippe Briand (IRMAR, Université Rennes 1)
Abstract
In this paper we study one dimensional backward stochastic differential equations (BSDEs) with random terminal time not necessarily bounded or finite when the generator $F(t,Y,Z)$ has a quadratic growth in $Z$. We provide existence and uniqueness of a bounded solution of such BSDEs and, in the case of infinite horizon, regular dependence on parameters. The obtained results are then applied to prove existence and uniqueness of a mild solution to elliptic partial differential equations in Hilbert spaces. Finally we show an application to a control problem.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1529-1561
Publication Date: September 17, 2008
DOI: 10.1214/EJP.v13-514
References
- A. Ambrosetti, G. Prodi. A primer of nonlinear analysis. Corrected reprint of the 1993 original. Cambridge Studies in Advanced Mathematics 34 (1995). Cambridge University Press. MR1336591 96a:58019
- Ph. Briand, F. Confortola. BSDEs with stochastic Lipschitz condition and quadratic PDEs in Hilbert spaces. Stochastic Process. Appl. 118 (2008), 818-838.
- Ph. Briand, B. Delyon, Y. Hu, E. Pardoux, L. Stoica. Lp solutions of backward stochastic differential equations. Stochastic Process. Appl. 108 (2003), 109-129. MR2008603 2005c:60073
- Ph. Briand, Y. Hu. Stability of BSDEs with random terminal time and homogenization of semilinear elliptic PDEs. J. Funct. Anal. 155 (1998), 455-494. MR1624569 99e:35015
- R. Buckdahn, S. Peng. Stationary backward stochastic differential equations and associated partial differential equations. Probab. Theory Related Fields 115 (1999), 383-399. MR1725404 2000h:60062
- S. Cerrai. Second order PDE's in finite and infinite dimension. A probabilistic approach. Lecture Notes in Mathematics 1762 (2001) Springer-Verlag. MR1840644 2002j:35327
- R.W.R. Darling, E. Pardoux. Backwards SDE with random terminal time and applications to semilinear elliptic PDE. Ann. Probab. 25 (1997), 1135-1159. MR1457614 98k:60095
- N. El Karoui. Backward stochastic differential equations: a general introduction. Backward stochastic differential equations (Paris, 1995--1996), 7--26, Pitman Res. Notes Math. Ser. 364 (1997) Longman, Harlow. MR1752672
- G. Da Prato, J. Zabczyk. Ergodicity for infinite-dimensional systems. London Mathematical Society Lecture Note Series 229 (1996) Cambridge University Press MR1417491 97k:60165
- G. Da Prato, J. Zabczyk. Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications 44 (1992) Cambridge University Press MR1207136 95g:60073
- G. Da Prato, J. Zabczyk. Second order partial differential equations in Hilbert spaces. London Mathematical Society Lecture Note Series 293 (2002) Cambridge University Press MR1985790 2004e:47058
- M. Fuhrman, Y. Hu, G. Tessitore. On a class of stochastic optimal control problems related to BSDEs with quadratic growth. SIAM J. Control Optim. 45 (2006), 1279-1296 (electronic) MR2257222 2008c:93146
- M. Fuhrman, G. Tessitore. Nonlinear Kolmogorov equations in infinite dimensional spaces: the backward stochastic differential equations approach and applications to optimal control. Ann. Probab. 30 (2002), 1397-1465. MR1920272 2003d:60131
- M. Fuhrman, G. Tessitore. Infinite horizon backward stochastic differential equations and elliptic equations in Hilbert spaces. Ann. Probab. 32 (2004), 607-660. MR2039938 2005b:60167
- F. Gozzi, E. Rouy. Regular solutions of second-order stationary Hamilton-Jacobi equations. J. Differential Equations 130 (1996), 201-234. MR1409030 98f:49030
- Y. Hu, P. Imkeller, M. Müller. Utility maximization in incomplete markets. Ann. Appl. Probab. 15 (2005), 1691-1712. MR2152241 2006b:91071
- Y. Hu, G. Tessitore. BSDE on an infinite horizon and elliptic PDEs in infinite dimension. NoDEA Nonlinear Differential Equations Appl. 14 (2007), 825-846. MR2374211
- N. Kazamaki. Continuous exponential martingales and BMO. Lecture Notes in Mathematics 1579 (1994) Springer-Verlag MR1299529 95k:60110
- M. Kobylanski. Backward stochastic differential equations and partial differential equations with quadratic growth. Ann. Probab. 28 (2000), 558-602. MR1782267 2001h:60110
- F. Masiero. Infinite horizon stochastic optimal control problems with degenerate noise and elliptic equations in Hilbert spaces. Appl. Math. Optim. 55 (2007), 285-326. MR2313330
- J.-P. Lepeltier, J. San Martín. Existence for BSDE with superlinear-quadratic coefficient. Stochastics Stochastics Rep. 63 (1998), 227-240. MR1658083 99j:60087
- É. Pardoux. Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and elliptic PDEs of second order. Stochastic analysis and related topics, VI (Geilo, 1996), 79-127, Progr. Probab. 42 (1998) Birkhäuser Boston MR1652339 99m:35279
- É. Pardoux. BSDEs, weak convergence and homogenization of semilinear PDEs. Nonlinear analysis, differential equations and control (Montreal, QC, 1998), 503--549, NATO Sci. Ser. C Math. Phys. Sci. 528 (1999) Kluwer Acad. Publ. MR1695013 2000e:60096
- D. Revuz, M. Yor. Continuous martingales and Brownian motion. Grundlehren der Mathematischen Wissenschaften 293 (1999). Springer-Verlag MR1725357 2000h:60050
- M. Royer. BSDEs with a random terminal time driven by a monotone generator and their links with PDEs. Stoch. Stoch. Rep. 76 (2004), 281-307. MR2075474 2005k:60202

This work is licensed under a Creative Commons Attribution 3.0 License.