A tail inequality for suprema of unbounded empirical processes with applications to Markov chains
Abstract
We present a tail inequality for suprema of empirical processes generated by variables with finite $\psi_\alpha$ norms and apply it to some geometrically ergodic Markov chains to derive similar estimates for empirical processes of such chains, generated by bounded functions. We also obtain a bounded difference inequality for symmetric statistics of such Markov chains.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1000-1034
Publication Date: June 29, 2008
DOI: 10.1214/EJP.v13-521
References
- Baxendale P. H. Renewal theory and computable convergence rates for geometrically ergodic Markov chains. Ann. Appl. Probab. 15 (2005), no. 1B, 700--738. MR2114987 (2005m:60164)
- Boucheron S., Bousquet O., Lugosi G., Massart P. Moment inequalities for functions of independent random variables. Ann. Probab 33 (2005), no. 2, 514-560. MR2123200 (2006a:60024)
- Bousquet O. A Bennett concentration inequality and its application to suprema of empirical processes. C. R. Math. Acad. Sci. Paris 334 (2002), no. 6, 495--500. MR1890640 (2003f:60039)
- Einmahl U., Li D. Characterization of LIL behavior in Banach space. To appear in Trans. Am. Math. Soc.
- Giné E., Latała R., Zinn J. Exponential and moment inequalities for U-statistics. In High Dimensional Probability II, 13-38. Progr. Probab. 47. Birkhauser, Boston, Boston, MA, 2000. MR1857312. MR1857312 (2002i:60035)
- Glynn P. W., Ormoneit D. Hoeffding's inequality for uniformly ergodic Markov chains. Statist. Probab. Lett. 56 (2002), no. 2, 143--146. MR1881167. MR1881167 (2002k:60143)
- Klein T., Rio, E. Concentration around the mean for maxima of empirical processes. Ann. Probab. 33 (2005), no. 3, 1060--1077. MR2135312. MR2135312 (2006c:60022)
- Kontorovich L., Ramanan K. Concentration Inequalities for Dependent Random Variables via the Martingale Method. To appear in Ann. Probab.
- Kontoyiannis I., Lastras-Montaño L., Meyn S. P. Relative Entropy and Exponential Deviation Bounds for General Markov Chains. 2005 IEEE International Symposium on Information Theory. Math. Review number not available.
- Ledoux M. On Talagrand's deviation inequalities for product measures. ESAIM: Probability and Statistics, 1 (1996), 63-87. MR1399224 (97j:60005)
- Ledoux M. The concentration of measure phenomenon. Mathematical Surveys and Monographs, 89. American Mathematical Society, Providence, RI, 2001. MR1849347 (2003k:28019)
- Ledoux M., Talagrand M. Probability in Banach spaces. Isoperimetry and processes. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 23. Springer-Verlag, Berlin, 1991. MR1102015 (93c:60001)
- Marton K. A measure concentration inequality for contracting Markov chains. Geom. Funct. Anal. 6 (1996), no. 3, 556--571. MR1392329 (97g:60082)
- Marton K. Erratum to: "A measure concentration inequality for contracting Markov chains". Geom. Funct. Anal. 6 (1996), no. 3, 556--571. MR1466340 (98h:60096)
- Marton, K. Measure concentration for a class of random processes. Probab. Theory Related Fields 110 (1998), no. 3, 427--439. MR1616492 (99g:60074)
- Massart, P. About the constants in Talagrand's concentration inequalities for empirical processes. Ann. Probab. 28 (2000), no. 2, 863--884. MR1782276 (2001m:60038)
- Mendelson S. Tomczak-Jaegermann N., A subgaussian embedding theorem. Israel J. Math. Vol. 164 (2008). Math Review number not available.
- Meyn, S. P., Tweedie, R. L. Markov chains and stochastic stability. Communications and Control Engineering Series. Springer-Verlag London, Ltd., London, 1993. MR1287609 (95j:60103)
- Montgomery-Smith S.J. Comparison of sums of independent identically distributed random vectors. Probab. Math. Statist. 14 (1993), no. 2, 281--285. MR1321767 (96b:60042)
- Panchenko D. Symmetrization approach to concentration inequalities for empirical processes. Ann. Probab. 31 (2003), no. 4, 2068--2081. MR2016612 (2005c:60023)
- Pisier, G. Some applications of the metric entropy condition to harmonic analysis. Banach spaces, harmonic analysis, and probability theory., 123--154, Lecture Notes in Math., 995, Springer, Berlin, 1983. MR0717231 (85f:60061)
- Roberts, G. O., Rosenthal, J. S. General state space Markov chains and MCMC algorithms. Probab. Surv. 1 (2004), 20--71. MR2095565 (2005i:60135)
- Samson, P.M. Concentration of measure inequalities for Markov chains and $Phi$-mixing processes. Ann. Probab. 28 (2000), no. 1, 416--461. MR1756011 (2001d:60015)
- Talagrand M. New concentration inequalities in product spaces. Invent. Math. 126 (1996), no. 3, 505--563. MR1419006 (99b:60030)
- van der Vaart, Aad W., Wellner, Jon A. Weak convergence and empirical processes. With applications to statistics. Springer Series in Statistics. Springer-Verlag, New York, 1996. MR1385671 (97g:60035)

This work is licensed under a Creative Commons Attribution 3.0 License.