Existence of a critical point for the infinite divisibility of squares of Gaussian vectors in R2 with non--zero mean
Michael B. Marcus (CUNY)
Abstract
Let $G=(G_{1},G_{2})$ be a Gaussian vector in $R^{2}$ with $E(G_{1}G_{2})\ne 0$. Let $c_{1},c_{2}\in R^{1}$. A necessary and sufficient condition for the vector $((G_{1}+c_{1}\alpha )^{2},(G_{2}+c_{2}\alpha )^{2})$ to be infinitely divisible for all $\alpha \in R^{1}$ is that $$ \Gamma_{i,i}\ge \frac{c_{i}}{c_{j}}\Gamma_{i,j}>0\qquad\forall\,1\le i\ne j\le 2.\qquad(0.1) $$ In this paper we show that when (0.1) does not hold there exists an $0<\alpha _{0} < \infty $ such that $((G_{1}+c_{1}\alpha )^{2},(G_{2}+c_{2}\alpha )^{2})$ is infinitely divisible for all $|\alpha |\le \alpha _{0}$ but not for any $|\alpha | > \alpha _{0}$.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1417-1455
Publication Date: June 28, 2009
DOI: 10.1214/EJP.v14-669
References
- Eisenbaum, Nathalie. On the infinite divisibility of squared Gaussian processes. Probab. Theory Related Fields 125 (2003), no. 3, 381--392. MR1964459 (2004b:60050)
- Eisenbaum, Nathalie. A connection between Gaussian processes and Markov processes. Electron. J. Probab. 10 (2005), no. 6, 202--215 (electronic). MR2120243 (2005m:60071)
- Eisenbaum, Nathalie; Kaspi, Haya. A characterization of the infinitely divisible squared Gaussian processes. Ann. Probab. 34 (2006), no. 2, 728--742. MR2223956 (2007d:60012)
- Eisenbaum, Nathalie; Kaspi, Haya; Marcus, Michael B.; Rosen, Jay; Shi, Zhan. A Ray-Knight theorem for symmetric Markov processes. Ann. Probab. 28 (2000), no. 4, 1781--1796. MR1813843 (2002j:60138)
- Feller, William. An Introduction to Probability Theory and Its Applications. Vol. I.John Wiley & Sons, Inc., New York, N.Y., 1950. xii+419 pp. MR0038583 (12,424a)
- Marcus, Michael B.; Rosen, Jay. Infinite divisibility of Gaussian squares with non-zero means. Electron. Commun. Probab. 13 (2008), 364--376. MR2415144 (2009e:60085)
- Marcus, Michael B.; Rosen, Jay. Markov processes, Gaussian processes, and local times.Cambridge Studies in Advanced Mathematics, 100. Cambridge University Press, Cambridge, 2006. x+620 pp. ISBN: 978-0-521-86300-1; 0-521-86300-7 MR2250510 (2008b:60001)

This work is licensed under a Creative Commons Attribution 3.0 License.