Uniform Estimates for Metastable Transition Times in a Coupled Bistable System
Anton Bovier (Rheinische Friedrich-Wilhelms-Universität)
Sylvie Méléard (École Polytechnique)
Abstract
We consider a coupled bistable $N$-particle system on $\mathbb{R}^N$ driven by a Brownian noise, with a strong coupling corresponding to the synchronised regime. Our aim is to obtain sharp estimates on the metastable transition times between the two stable states, both for fixed $N$ and in the limit when $N$ tends to infinity, with error estimates uniform in $N$. These estimates are a main step towards a rigorous understanding of the metastable behavior of infinite dimensional systems, such as the stochastically perturbed Ginzburg-Landau equation. Our results are based on the potential theoretic approach to metastability.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 323-345
Publication Date: April 9, 2010
DOI: 10.1214/EJP.v15-751
References
- F. Barret. Metastability: Application to a model of sharp asymptotics for capacities and exit/hitting times. Master thesis, ENS Cachan (2007). Math. Review number not available.
- N. Berglund, B. Fernandez, B. Gentz. Metastability in Interacting Nonlinear Stochastic Differential Equations I: From Weak Coupling to Synchronization. Nonlinearity 20(11), 2007, 2551-2581. Math. Review 2009a:60116
- N. Berglund, B. Fernandez, B. Gentz. Metastability in Interacting Nonlinear Stochastic Differential Equations II: Large-N Behavior. Nonlinearity, 20(11), 2007, 2583-2614. Math. Review 2009a:60117
- A. Bovier. Metastability, in Methods of Contemporary Statistical Mechanics (R. Kotecky, ed.), 177-221. Lecture Notes in Mathematics 1970. Springer, Berlin, 2009. Math. Review number not available.
- A. Bovier, M. Eckhoff, V. Gayrard, M. Klein. Metastability in reversible diffusion processes I. Sharp asymptotics for capacities and exit times. Journal of the European Mathematical Society 6(2), 2004, 399-424. Math. Review 2006b:82112
- B. Bianchi, A. Bovier, I. Ioffe. Sharp asymptotics for metastability in the Random Field Curie-Weiss model. Electr. J. Probab. 14 (2008), 1541--1603. Math. Review MR2525104
- S. Brassesco. Some results on small random perturbations of an infinite-dimensional dynamical system. Stochastic Process. Appl. 38 (1991), 33--53. Math. Review 92k:60125
- K.L. Chung, J.B. Walsh. Markov processes, Brownian motion, and time symmetry. Second edition. Springer, 2005. Math. Review 2006j:60003
- M.I. Freidlin, A.D. Wentzell. Random Perturbations of Dynamical Systems. Springer, 1984. Math. Review 99h:60128
- W.G. Faris, G. Jona-Lasinio. Large fluctuations for a nonlinear heat equation with noise. J. Phys. A 15 (1982), 3025--3055. Math. Review 84j:81073
- M. Fukushima, Y. Mashima, M. Takeda. Dirichlet forms and symmetric Markov processes. de Gruyter Studies in Mathematics 19. Walter de Gruyter & Co., Berlin, 1994. Math. Review 96f:60126
- D. Gilbarg, N.S. Trudinger. Elliptic partial differential equations of second order. Springer, 2001. Math. Review 2001k:35004
- R. Maier, D. Stein. Droplet nucleation and domain wall motion in a bounded interval. Phys. Rev. Lett. 87 (2001), 270601-1--270601-4. Math. Review number not available.
- F. Martinelli, E. Olivieri, E. Scoppola. Small random perturbations of finite- and infinite-dimensional dynamical systems: unpredictability of exit times. J. Statist. Phys. 55 (1989), 477--504. Math. Review 91f:60105
- E. Olivieri, M.E. Vares. Large deviations and metastability. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2005. Math. Review 2005k:60007
- M. Reed, B. Simon. Methods of modern mathematical physics: I Functional Analysis. Second edition. Academic Press, 1980. Math. Review 85e:46002
- E. Vanden-Eijnden, M.G. Westdickenberg. Rare events in stochastic partial differential equations on large spatial domains. J. Stat. Phys. 131 (2008), 1023--1038. Math. Review 2009d:82053

This work is licensed under a Creative Commons Attribution 3.0 License.