Exponential Estimates for Stochastic Convolutions in 2-Smooth Banach Spaces
Abstract
Sharp constants in a (one-sided) Burkholder-Davis-Gundy type estimate for stochastic integrals in a 2-smooth Banach space are found. As a consequence, exponential tail estimates for stochastic convolutions are obtained via Zygmund's extrapolation theorem.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1556-1573
Publication Date: October 15, 2010
DOI: 10.1214/EJP.v15-808
References
- M.T. Barlow, M. Yor. Semi-martingale inequalities via the Garsia-Rodemich-Rumsey lemma, and applications to local times. J. Funct. Anal. 49 (1982), 198-229. Math. Review 84f:60073
- S. Blunck, L. Weis. Operator theoretic properties of semigroups in terms of their generators. Studia Math. 146 (2001), 35-54. Math. Review 2002b:47085
- Z. Brzeźniak. On stochastic convolution in Banach spaces and applications. Stochastics Stochastics Rep. 61 (1997), 245-295. Math. Review 1488138
- Z. Brzeźniak. Some remarks on Itô and Statonovich integration in 2-smooth Banach spaces. Probabilistic methods in fluids, 48-69, World Sci. Publ., River Edge 2003. Math. Review 2005g:60085
- Z. Brzeźniak, S. Peszat. Maximal inequalities and exponential estimates for stochastic convolutions in Banach spaces. Stochastic processes, physics and geometry: new interplays, I (Leipzig, 1999), 55-64, Amer. Math. Soc., Providence 2000. Math. Review 2001k:60084
- P.-L. Chow. Stochastic partial differential equations. Chapman & Hall/CRC, Boca Raton 2007. Math. Review 2008d:35243
- G. Da Prato, J. Zabczyk. Stochastic equations in infinite dimensions. Cambridge University Press, Cambridge 1992. Math. Review 95g:60073
- B. Davis. On the L$^p$ norms of stochastic integrals and other martingales. Duke Math. J. 43 (1976), 697-704. Math. Review 54 #6260
- E. Dettweiler. Stochastic integral equations and diffusions on Banach spaces. Probability theory on vector spaces, III (Lublin, 1983), 9-45, Lecture Notes in Math. 1080, Springer, Berlin 1984. Math. Review 0788000
- E. Dettweiler. Stochastic integration relative to Brownian motion on a general Banach space. Doğa Mat. 15 (1991), 58-97. Math. Review 93b:60112
- A.M. Fröhlich, L. Weis. $H^infty$ calculus and dilations. Bull. Soc. Math. France 134 (2006), 487-508. Math. Review 2009a:47091
- E. Hausenblas, J. Seidler. Stochastic convolutions driven by martingales: Maximal inequalities and exponential integrability. Stoch. Anal. Appl. 26 (2008), 98-119. Math. Review 2009a:60066
- P. Hitczenko. On the behavior of the constant in a decoupling inequality for martingales. Proc. Amer. Math. Soc. 121 (1994), 253-258. Math. Review 94g:60085
- O. Kallenberg, R. Sztencel. Some dimension-free features of vector-valued martingales. Probab. Theory Related Fields 88 (1991), 215-247. Math. Review 92h:60073
- P.C. Kunstmann, L. Weis. Maximal $L_p$-regularity for parabolic equations, Fourier multiplier theorems and $H^infty$-functional calculus. Functional analytic methods for evolution equations, 65-311, Lecture Notes in Math. 1855, Springer, Berlin 2004. Math. Review 2005m:47088
- V. Linde, A. Pič. Mappings of Gaussian measures of cylindrical sets in Banach spaces (Russian). Teor. Veroyatnost. i Primenen. 19 (1974), 472-487. Math. Review 50 #8672
- A.L. Neidhardt. Stochastic integrals in $2$-uniformly smooth Banach spaces. Ph.D. Thesis, University of Wisconsin 1978. Math. Review number not available.
- M. Ondrejáat. Uniqueness for stochastic evolution equations in Banach spaces. Dissertationes Math. (Rozprawy Mat.) 426 (2004), 63pp. Math. Review 2005e:60133
- M. Ondrejáat. Personal communication. Math. Review number not available.
- C. Michels: $Lambda(p)$-sets and the limit order of operator ideals. Math. Nachr. 239/240 (2002), 170-176. Math. Review 2003d:47027
- A. Pietsch. Operator ideals. VEB Deutscher Verlag der Wissenschaften, Berlin 1978 Math. Review 81a:47002
- I. Pinelis. Optimum bounds for the distributions of martingales in Banach spaces. Ann. Probab. 22 (1994), 1679-1706. Math. Review 96b:60010
- Y.-F. Ren, H.-Y. Liang. On the best constant in Marcinkiewicz-Zygmund inequality. Statist. Probab. Lett. 53 (2001), 227-233. Math. Review 2002b:60026
- J. Seidler, T. Sobukawa. Exponential integrability of stochastic convolutions. J. London Math. Soc. (2) 67 (2003), 245-258. Math. Review 2003i:60109
- M. Veraar, L. Weis. A note on maximal estimates for stochastic convolutions. Preprint arXiv:1004.5061. Math. Review number not available.
- A. Zygmund. Trigonometric series, Vol. II. Cambridge University Press, New York 1959. Math. Review 21 #6498

This work is licensed under a Creative Commons Attribution 3.0 License.