The Maximum of Brownian Motion Minus a Parabola
Abstract
We derive a simple integral representation for the distribution of the maximum of Brownian motion minus a parabola, which can be used for computing the density and moments of the distribution, both for one-sided and two-sided Brownian motion.
Full Text: Download PDF | View PDF online (requires PDF plugin)
Pages: 1930-1937
Publication Date: November 17, 2010
DOI: 10.1214/EJP.v15-826
References
- M. Abramowitz, and I.E. Stegun. Handbook of Mathematical Functions. National Bureau of Standards Applied Mathematics Series No. 55. U.S. Government Printing Office, Washington. (1964). MR0167642
- H.E. Chernoff. Estimation of the mode. Ann. Statist. Math. 16 (1964), 85-99. MR0172382
- H.E. Daniels and T.H.R. Skyrme. The maximum of a random walk whose mean path has a maximum. Adv. in Appl. Probab. 17 (1985), 85--99. MR0778595
- P. Groeneboom. Estimating a monotone density. In Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, II. L. M Le Cam and R. A. Olshen, editors, 535 - 555. Wadsworth, Belmont. (1985). MR0822052
- P. Groeneboom. Brownian motion with a parabolic drift and Airy functions. Probab. Theory Related Fields. 1, (1989), 71--109. MR0981568
- P. Groeneboom and J. A. Wellner. Computing Chernoff's distribution. J. Comput. Graph. Statist. 10 (2001), 388--400. MR1939706
- S. Janson, G. Louchard and A. Martin-Löf, A. (2010). The maximum of Brownian motion with a parabolic drift. Electronic Journal of Probability, Volume 15, paper 61, 2010
- M. Perman and J.A. Wellner. On the distribution of Brownian areas. Ann. Appl. Probab. 6, (1996), 1091--1111. MR1422979
- S. Wolfram. Mathematica. (2009). Wolfram Research, Champaign. Math. Review number not available.

This work is licensed under a Creative Commons Attribution 3.0 License.