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Abstract. In this paper, we study the multiplicity of solutions to a class of Kirchhoff-
type equation with critical growth

−
(

a + b
∫

R3
|∇u|2dx

)
∆u + V(x)u = λh(x) f (u) + g(x)u5 in R3,

where a, b > 0, λ is a positive parameter and f is a continuous nonlinearity with
subcritical growth. Under suitable conditions on the potentials V(x), h(x) and g(x),
we prove the multiplicity results and investigate the relation between the number of
solutions with the topology of the set where g attains its maximum value for small
values of the parameter λ. The proofs are based on Nehari manifold and Lusternik–
Schnirelmann theory.
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1 Introduction

Consider the following Kirchhoff-type problem

−
(

a + b
∫

R3
|∇u|2dx

)
∆u + V(x)u = λh(x) f (u) + g(x)u5 in R3, (1.1)

where a, b > 0 are constants and λ > 0 is a parameter. The Kirchhoff-type problem is
primarily introduced in [10] to generalize the classical D’Alembert wave equation for free
vibrations of elastic strings. More precisely, the original equation is

hρ
∂2u
∂t2 −

(
P0 +

Eh
2L

∫ L

0

∣∣∣∣∂u
∂x

∣∣∣∣2 dx

)
∂2u
∂x2 + δ

∂u
∂t

+ f (x, u) = 0 (1.2)

for t ≥ 0 and 0 < x < L, where u = u(t, x) is the lateral displacement at the time t and at the
space coordinate x, L the length of the string, h the cross-section area, E the Young modulus
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of the material, ρ the mass density, P0 the initial axial tension, δ the resistance modulus and f
the external force. When δ = f = 0, equation (1.2) is introduced by Kirchhoff [10]. For more
physical and mathematical background on Kirchhoff-type problems, we refer the readers to
[2, 7] and the references therein.

If we set V = 0 and replace R3 by a smooth bounded domain Ω ⊂ RN(N ≥ 3), then
problem (1.1) becomes a special case of the following Kirchhoff Dirichlet problem{

−
(
a + b

∫
Ω |∇u|2dx

)
∆u = f̂ (x, u) in Ω,

u = 0 on ∂Ω.
(1.3)

Problem (1.3) is often referred to be nonlocal because of the presence of the term(∫
Ω |∇u|2dx

)
∆u which implies that (1.3) is no longer a pointwise identity. This phenomenon

causes some mathematical difficulties, which make the study of problem (1.3) particularly
interesting. After Lions [12] proposed an abstract functional analysis framework, problem
(1.3) had attracted much attention, see, for example, [6, 17–19] and the references therein. In
[19], Qin et al. considered (1.3) in the case where f̂ (x, u) := Q(x)u5 + λ|u|p−1u (3 < p < 5),
and proved the existence of one ground state solution by using variational methods that
are constrained to the Nehari manifold. The relation between the number of maxima of
Q and the number of positive solutions for the problem was also investigated. In [17],
Naimen generalized the result of Brézis and Nirenberg ([5]) to problem (1.3) for the case
when f̂ (x, u) := λ f (x, u) + |u|2∗−2u, a, b ≥ 0 and a + b > 0. Some existence results as
well as nonexistence results were obtained. In [18], the authors further studied the high di-
mensional case (N ≥ 5), and proved the multiplicity of positive solutions of problem (1.3)
when f̂ (x, u) := λup + u2∗−1 with q ∈ [1, 2∗ − 1). By combining the variational method and
Lusternik–Schnirelmann theory, Cai et al. [6] discussed problem (1.3), where N = 3 and
f̂ (x, u) := |u|4−εu − λu with ε ∈ (0, 2) and λ ≥ 0, and obtained the existence of multiple
positive solutions.

Recently, many researchers focused on the existence, multiplicity and asymptotic behavior
of solutions of the following problem{

−
(
a + b

∫
R3 |∇u|2dx

)
∆u + V(x)u = f̂ (x, u) in R3,

u ∈ H1(R3),
(1.4)

where V : R3 → R is a potential function and f̂ ∈ C(R3 × R, R), see [8, 11, 23–27] and the
references therein. In [25], Zhang studied problem (1.4) in the case where V = 1 and f̂ (x, u) =
a(x)|u|p−2u+ λb(x)|u|q−2u+ u5 with p, q ∈ (4, 6). Besides some other conditions, he assumed
that a, b ∈ C(R3, R), lim|x|→∞ a(x) = a∞, lim|x|→∞ b(x) = 0 and a(x) ≥ a∞ − Ce−a0|x| for some
a0 > 0 and x ∈ R3, and proved the existence of one ground state solution for each λ > 0. It
was also proven the existence of two nontrivial solutions for λ > 0 small. Fan [8] discussed
problem (1.4) when V = 1 and f̂ (x, u) = λ f (x)up−2 + g(x)u5 with (4 < p < 6). With the help
of Nehari manifold and Lusternik–Schnirelmann theory, he obtained a relationship between
the number of positive solutions and the topology of the global maximum set of g. Later,
by using a technique introduced by Adachi and Tanaka [1], Zhang et al. [27] obtained the
existence of two nontrivial solutions for problem (1.4) when f̂ (x, u) := λ f (u) + g(x)u5 with f
belongs to C1(R, R), V has a positive lower bound and satisfies the condition

∃r > 0 such that lim
|y|→∞

meas
{

x ∈ R3 : |x − y| < r, V(x) ≤ M
}
= 0, ∀M > 0.
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Following [27], Zhang et al. [28] studied the multiplicity of solutions for the ciritical fractional
Schrödinger equation with a small superlinear term of the form (−∆)su+V(x)u = λ f (x, u) +
g(x)|u|2∗s −2u in RN , where N ≥ 3, s ∈ (0, 1) and 2∗s = 2N

N−2s is the critical exponent. Li et al.
[11] studied the existence and concentration of positive solutions for the following nonlinear
Kirchhoff-type problem

−
(

ε2a + εb
∫

R3
|∇u|2dx

)
∆u + V(x)u = P(x) f (u) + Q(x)u5 in R3,

where a, b > 0, ε > 0 is a parameter and f is a continuous subcritical nonlinearity. As ε → 0,
they explored the asymptotic behavior of the semiclassical solutions. See also [26, 30] for
related results.

Motivated by the works mentioned above, in this paper, we consider the multiplicity of so-
lutions for the critical Kirchhoff-type problem (1.1) under more general conditions. Precisely,
we make the following hypotheses:

(V) V ∈ C(R3, R), infx∈R3 V(x) := V0 > 0 and lim|x|→∞ V(x) = V∞ > 0.

(h) h ∈ C(R3, R), infx∈R3 h(x) := h0 > 0 and lim|x|→∞ h(x) = h∞ > 0.

( f1) f ∈ C(R, R) and lims→0
f (s)

s = lim|s|→∞
f (s)
s5 = 0.

( f2)
f (s)
s3 is positive for s ̸= 0, nonincreasing on (−∞, 0) and nondecreasing on (0,+∞).

( f3) lims→+∞
F(s)
|s|4 = +∞, where F(s) =

∫ s
0 f (t)dt.

(g1) g ∈ C(R3, R), g0 := infx∈R3 g(x) > 0, gM := supx∈R3 g(x) < +∞ and g∞ :=
lim inf|x|→∞ g(x) < gM.

(g2) There exists ρ0 > 0 such that g(x) = gM for ρ0 < |x| < 2ρ0. Moreover, g(0) < gM.

For dealing with the multiplicity of solutions to problem (1.1), we recall the Lusternik–
Schnirelmann category theory. Suppose that Y is a closed subset of a topological space X, we
denoted by catX(Y) the Lusternik–Schnirelmann category of Y in X, that is the least number
of closed and contractible sets in X which cover Y; see [4] for more details. Denote

Λ :=
{

y ∈ R3 : g(y) = gM
}

and Λd :=
{

x ∈ R3 : dist(x, Λ) < d
}

for d > 0.

We assume that

(g3) The set Λ is nonempty and bounded, there exists ρ ≥ 1 such that g(x) − g(y) =

O(|x − y|ρ) as x → y uniformly for y ∈ Λ.

The main results of this paper are the following.

Theorem 1.1. Assume that (V), (h), ( f1)–( f3) and (g1)–(g2) are satisfied. Then there exists λ0 > 0
such that problem (1.1) has at least two nontrivial solutions for λ ∈ (0, λ0).

Theorem 1.2. Assume that (V), (h), ( f1)–( f3), (g1) and (g3) are satisfied. Then for any d > 0, there
exists λd > 0 such that, for any λ ∈ (0, λd), problem (1.1) has at least catΛd(Λ) nontrivial solutions.
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Remark 1.3. By assumption (g3), there exist C, r > 0 such that for any y ∈ Λ,

|g(x)− g(y)| ≤ C|x − y|ρ, ∀x ∈ Br(y),

where Br(y) denotes the ball in R3 with radius r and center y.

Remark 1.4. We point out that, in some special cases, Theorem 1.2 permits to find an ar-
bitrarily large number of solutions of problem (1.1). For example, suppose that (V), (h),
( f1)–( f3) hold, g ∈ C(R3, (0,+∞)) satisfying 0 < g0 ≤ g∞ < gM, and there exist k points
x1, x2, . . . , xk in R3 such that g(xi) are strict local maxima satisfying g(xi)= gM =maxx∈R3 g(x),
and

|g(x)− g(xi)| = O(|x − xi|ρ) as x → xi

for each i = 1, 2, . . . , k and some ρ ≥ 1. Then it is easy to check that there exists d = d(k) > 0
such that catΛd(Λ) ≥ k. By Theorem 1.2, problem (1.1) has at least k solutions for any λ ∈
(0, λd).

The proofs of Theorem 1.1 and Theorem 1.2 are based on variational methods. Since f
is only continuous, we can not use the Nehari manifold arguments developed in [9, 14, 16]
in which the condition f ∈ C1 is required and to overcome this difficulty, we apply some
variants of critical point theorems due to Szulkin and Weth [20]. Moreover, there are two
main difficulties to prove our result. First, the lack of compactness which caused by the
unbounded domain and the critical growth terms makes the bounded (PS) sequences could
not converge. Second, the appearance of the nonlocal term, it would be natural to consider
how the interaction between the nonlocal term and the critical nonlinear term will effect the
existence and multiplicity of solutions of problem (1.1). To overcome these difficulties, we
adapt a technique introduced by Benci and Cerami [4] and use the Lusternik–Schnirelmann
category.

The paper is organized as follows. In Section 2, we present some technique lemmas and
make the estimations for the functionals associated to problem (1.1). In Sections 3 and 4, we
show the multiplicity results and complete the proofs of Theorems 1.1 and 1.2, respectively.

Throughout the paper, we make use of the following notations. H1(R3) is the Hilbert
space endowed with the norm ∥u∥2 =

∫
R3(|∇u|2 + u2)dx. Ls(R3), 1 ≤ s ≤ +∞, denotes

the usual Lebesgue space with the norm ∥ · ∥s. D1,2(R3) is the completion of C∞
0 (R3) with

respect to the norm ∥u∥2
D1,2 :=

∫
R3 |∇u|2dx. S denotes the best Sobolev constant S :=

infu∈D1,2(R3)\{0} ∥u∥2
D1,2 \ ∥u∥2

6. Finally, C, C1, C2, . . . denote different positive constants whose
exact value is inessential.

2 Preliminaries

Let E = H1(R3) and ∥u∥ =
(∫

R3(a|∇u|2 + V(x)u2)dx
)1/2. Then, by (V), ∥ · ∥ is an equivalent

norm on E. We defined the functional on E by

Iλ(u) =
1
2
∥u∥2 +

b
4

(∫
R3

|∇u|2dx
)2

−
∫

R3

(
λh(x)F(u) +

1
6

g(x)|u|6
)

dx.

It follows from ( f1) that for any ε > 0, p ∈ (2, 6), there exists Cε > 0 such that

max {|F(u)|, | f (u)u|} ≤ ε|u|2 + Cε|u|6, ∀u ∈ R, (2.1)
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max {|F(u)|, | f (u)u|} ≤ ε(|u|2 + |u|6) + Cε|u|p, ∀u ∈ R. (2.2)

By ( f2), we derive that
1
4

f (u)u ≥ F(u) ≥ 0, ∀u ∈ R (2.3)

and
1
4

f (t)t − F(t) is nondecreasing in t > 0 and nonincreasing in t < 0. (2.4)

Indeed, for 0 ≤ s ≤ t, we have(
1
4

f (t)t − F(t)
)
−
(

1
4

f (s)s − F(s)
)
=

1
4
( f (t)t − f (s)s)− (F(t)− F(s))

=
∫ t

0

f (t)
t3 τ3dτ −

∫ s

0

f (s)
s3 τ3dτ −

∫ t

s
f (τ)dτ

=
∫ s

0

(
f (t)
t3 − f (s)

s3

)
τ3dτ +

∫ t

s

(
f (t)
t3 − f (τ)

τ3

)
τ3dτ

≥ 0.

Arguing similarly for the case t ≤ s ≤ 0.

In order to find the critical points of Iλ, we consider the Nehari manifold

Mλ =
{

u ∈ E \ {0} : ⟨I′λ(u), u⟩ = 0
}

.

Obviously, Mλ contains all nontrivial critical points of Iλ. Since it is not assumed that f is
differentiable, Mλ may not be a C1-manifold. To overcome the non-differentiability of Mλ,
we adapt a technique developed in Szulkin and Weth [20].

Lemma 2.1. Under conditions (V), (h), ( f1)–( f2) and (g1), for λ ∈ (0, 1), we have

(i) for each u ∈ E \ {0}, there exists a unique tu > 0 such that tuu ∈ Mλ. Moreover, the point tu

is a maximum for t → Iλ(tu);

(ii) the set Mλ is bounded away from 0;

(iii) let S1 = {u ∈ E : ∥u∥ = 1}, then there exists α > 0 such that tu ≥ α for each u ∈ S1 and, for
each compact subset K ⊂ S1, there exists a constant CK > 0 such that tu ≤ CK for all u ∈ K;

(iv) the mapping mλ is a homeomorphism between S1 and Mλ, and for every u ∈ Mλ, m−1
λ (u) =

u
∥u∥ ∈ S1.

Proof. (i) For each u ∈ E \ {0} and t > 0, set g(t) = Iλ(tu). It is easy to see that g(0) = 0,
g(t) > 0 for t > 0 small and g(t) < 0 for t > 0 large. Thus g has a positive maximum at
t = tu > 0 such that g′(tu) = 0 and tuu ∈ Mλ. Noticing

g′(t) = t

[
∥u∥2 + t2

(∫
R3

|∇u|2dx
)2
]
− t3

[
λ
∫

R3
h(x)

f (tu)
(tu)3 u4dx + t2

∫
R3

g(x)|u|6dx
]

,

we have that tu is unique. Indeed, suppose t′u > tu > 0 such that t′uu, tuu ∈ Mλ. Then we
deduce

∥u∥2

t2
u

+ b∥∇u∥4
2 = λ

∫
R3

h(x)
f (tuu)
(tuu)3 u4dx+t2

u

∫
R3

g(x)|u|6dx,
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∥u∥2

t′2u
+ b∥∇u∥4

2 = λ
∫

R3
h(x)

f (t′uu)
(t′uu)3 u4dx+t′2u

∫
R3

g(x)|u|6dx,

and hence,(
1
t2
u
− 1

t′2u

)
∥u∥2 = λ

∫
R3

h(x)
(

f (tuu)
(tuu)3 − f (t′uu)

(t′uu)3

)
u4dx+

(
t2
u − t′2u

) ∫
R3

g(x)|u|6dx,

which is impossible in view of ( f2) and t′u > tu > 0.
(ii) By using (2.1), (h) and (g1), we deduce that for any u ∈ Mλ,

∥u∥2 ≤
∫

R3

(
λh(x) f (u)u + g(x)|u|6

)
dx

≤ Cε
∫

R3
|u|2dx + (C1Cε + gM)

∫
R3

|u|6dx

≤ Cε

V0
∥u∥2 +

C1Cε + gM

(aS)3 ∥u∥6,

which implies that ∥u∥2 ≥ C2 for some C2 > 0.
(iii) For each u ∈ S1, there exists tu > 0 such that tuu ∈ Mλ. By (ii), we have

tu = ∥tuu∥ ≥ α.

Now we prove that tu ≤ CK for all u ∈ K ⊂ S1. Arguing indirectly, assume that there
exists {un} ⊂ K ⊂ S1 such that tun → ∞. Since K is compact, we have un → u ∈ K and∫

R3 |un|6dx →
∫

R3 |u|6dx > 0. Then,

Iλ(tun un) ≤
t2
un

2
∥un∥2 +

bt4
un

4

(∫
R3

|∇un|2dx
)2

−
t6
un

6

∫
R3

g0|un|6dx → −∞

as n → ∞, which leads to a contradiction because (2.3) implies that, for all u ∈ Mλ,

Iλ(u) = Iλ(u)−
1
4
⟨I′λ(u), u⟩,

=
1
4
∥u∥2 + λ

∫
R3

h(x)
(

1
4

f (u)u − F(u)
)

dx +
1

12

∫
R3

g(x)|u|6dx

≥ 0.

(iv) Let us define the maps m̂λ : E \ {0} → Mλ and mλ : S1 → Mλ by setting

m̂λ(u) = tuu and mλ = m̂λ |S1 . (2.5)

By virtue of (i)–(iii) and [20, Proposition 3.1], we deduce that mλ is a homemorphism between
S1 and Mλ, and the inverse of mλ is given by m−1

λ (u) = u
∥u∥ .

Now we define the functionals Ĵλ : E \ {0} → R and Jλ : S → R, as

Ĵλ(u) = Iλ(m̂λ(u)) and Jλ(u) = Ĵλ|S1 ,

where m̂λ(u) = tuu is given in (2.5). As in [20], we have the following conclusion.

Lemma 2.2. Under the conditions of Lemma 2.1, for λ ∈ (0, 1), we have
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(i) Jλ ∈ C1(S1, R) and for each v ∈ Tu(S1) := {v ∈ E : ⟨u, v⟩ = 0},

⟨J′λ(u), v⟩ = ∥mλ(u)∥⟨I′λ(mλ(u)), v⟩;

(ii) {un} is a Palais–Smale sequence for Jλ if and only if {mλ(un)} is a Palais–Smale sequence for Iλ.
If {un} ⊂ Mλ is a bounded Palais–Smale sequence for Iλ, then

{
m−1

λ (un)
}

is a Palais–Smale
sequence for Jλ;

(iii) u ∈ S1 is a critical point of Jλ if and only if mλ(u) is a nontrivial critical point of Iλ. Moreover,
the corresponding values coincide and infS1 Jλ = infMλ

Iλ.

Taking

c∗ :=
a
3

(
bS3 +

√
(bS3)2 + 4aS3gM

2gM

)
+

b
12

(
bS3 +

√
(bS3)2 + 4aS3gM

2gM

)2

and m∞
λ := infu∈M∞

λ
I∞
λ (u), where

I∞
λ (u) =

1
2
∥u∥2

V∞
+

b
4

(∫
R3

|∇u|2dx
)2

−
∫

R3

(
λh∞F(u) +

1
6

g∞|u|6
)

dx,

M∞
λ =

{
u ∈ E \ {0} : ⟨I∞

λ
′(u), u⟩ = 0

}
and ∥u∥V∞ =

(∫
R3(a∇u · ∇v + V∞uv)dx

) 1
2 . We have

the following local compactness result for Iλ.

Lemma 2.3. Assume that conditions (V), (h), ( f1)–( f2) and (g1) are satisfied. Let λ > 0 and
{un} ⊂ E be a sequence such that Iλ(un) → cλ ∈ (−∞, min

{
c∗, m∞

λ

}
) and I′λ(un) → 0 as n → ∞.

Then (un) has a strongly convergent subsequence.

Proof. By (V) and (2.3), we have

cλ + o(1) + o(1)∥un∥ = Iλ(un)−
1
4
⟨I′λ(un), un⟩ ≥

1
4
∥un∥2,

which implies that {un}n∈N ⊂ E is bounded. Going if necessary to a subsequence, we may
assume that there is u ∈ E such that for each bounded domain Ω ⊂ R3,

un ⇀ u in E, un(x) → u(x) a.e. x ∈ R3,

un → u in Ls(Ω) (2 < s < 6),

|un(x)| ≤ w(x) for some w ∈ Ls(Ω).

(2.6)

Take A = limn→∞
∫

R3 |∇un|2dx. We define the functionals G, H, Φ, Ψ on E by

G(u) =
1
2
∥u∥2 +

bA
2

∫
R3

|∇u|2dx −
∫

R3

(
λh(x)F(u) +

1
6

g(x)u6
)

dx,

H(u) =
1
2
∥u∥2

V∞
+

bA
2

∫
R3

|∇u|2dx −
∫

R3

(
λh∞F(u) +

1
6

g(x)u6
)

dx,

Φ(u) =
1
2
∥u∥2 +

bA
4

∫
R3

|∇u|2dx −
∫

R3

(
λh(x)F(u) +

1
6

g(x)u6
)

dx,

Ψ(u) =
1
2
∥u∥2

V∞
+

bA
4

∫
R3

|∇u|2dx −
∫

R3

(
λh∞F(u) +

1
6

g(x)u6
)

dx.
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We claim that G′(u) = 0, i.e., ⟨G′(u), φ⟩ = 0 for any φ ∈ C∞
0 (R3). Assume that 1 ≤ p, q, r, s <

+∞, Ω is a bounded domain and h ∈ C(Ω × R) satisfying |h(x, u)| ≤ C(|u|p/r + |u|q/s), then,
according to [22, Theorem A.4], the operator

A : Lp(Ω)
⋂

Lq(Ω) −→ Lr(Ω) + Ls(Ω) : u → h(x, u)

is continuous, where Lp(Ω)
⋂

Lq(Ω) is the space endowed with the norm |u|p∧q = ∥u∥Lp(Ω) +

∥u∥Lq(Ω) and Lr(Ω) + Ls(Ω) endowed with the norm

|u|r∨s = inf
{
∥v∥Lr(Ω) + ∥w∥Ls(Ω) : u = v + w, v ∈ Lr(Ω), w ∈ Ls(Ω)

}
.

Now set p = r = 2, q ∈ (5, 6), s = q/5 and h(x, u) = λh(x) f (u)u + g(x)u5. By (h), (g) and
( f1), we have

|h(x, u)| ≤ C(|u| 2
2 + |u|

q
s ), ∀(x, u) ∈ R3 × R.

Since φ ∈ C∞
0 (R3) has a compact support Ω0, un ⇀ u in E implies that un → u in

L2(Ω0)
⋂

Lq(Ω0). So, by virtue of [22, Theorem A.4],

h(x, un) → h(x, u) in L2(Ω0) + Ls(Ω0).

Hence ∫
R3

|(h(x, un)− h(x, u))φ|dx =
∫

Ω0

|(h(x, un)− h(x, u))φ|dx

≤ |h(x, un)− h(x, u)|2∨s|φ|2∧s′
n−→ 0,

where 1/s + 1/s′ = 1. Combining this and (2.6), we get that o(1) = ⟨I′λ(un), φ⟩ = ⟨G′(u), φ⟩+
o(1) for any φ ∈ C∞

0 (R3). Thus G′(u) = 0.
Let vn := un − u. It follows from the Brézis–Lieb lemma, [31, Lemma 2.2] and ( f1) that

∥un∥2 − ∥vn∥2 − ∥u∥2 = o(1),∫
R3

g(x)(u6
n − u6 − v6

n)dx = o(1),∫
R3

h(x) (F(un)− F(u)− F(vn)) dx = o(1).

(2.7)

Noting u is a critical point of G, arguing as in [29, Lemma 2.3], we can conclude that u is
locally bounded. Hence, for each ξ ∈ E, by [22, Lemma 8.9], we get∣∣∣∣∫

R3
g(x)(u5

n − u5 − v5
n)ξdx

∣∣∣∣ = o(1)∥ξ∥, (2.8)

and, similar to [22, Lemma 8.1],∣∣∣∣∫
R3

h(x)( f (un)− f (u)− f (vn))ξdx
∣∣∣∣ = o(1)∥ξ∥. (2.9)

Since vn ⇀ 0 in E, by (V), (h) and (2.2), we deduce that∫
R3
(V(x)− V∞)v2

ndx → 0,
∫

R3
(h(x)− h∞)F(vn)dx → 0, (2.10)

and ∫
R3
(V(x)− V∞)vnξdx → 0,

∫
R3
(h(x)− h∞) f (vn)ξdx, ∀ξ ∈ E (2.11)
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as n → ∞. Hence we have

cλ + o(1) = Iλ(un)

=
1
2
(∥u∥2 + ∥vn∥2) +

bA
4

∫
R3
(|∇u|2 + |∇vn|2)dx

−
∫

R3
λh(x)(F(u) + F(vn))dx −

∫
R3

1
6

g(x)(u6 + v6
n)dx + o(1)

=
1
2
(∥u∥2 + ∥vn∥2

V∞
) +

bA
4

∫
R3
(|∇u|2 + |∇vn|2)dx

−
∫

R3
λ(h(x)F(u) + h∞F(vn))dx −

∫
R3

1
6

g(x)(u6 + v6
n)dx + o(1)

= Φ(u) + Ψ(vn) + o(1),

by (2.10) and (2.7). Moreover, noting G′(u) = 0, by (h), (g1) and (2.3) we have

Φ(u) = Φ(u)− 1
4
⟨G′(u), u⟩

=
1
4
∥u∥2 +

∫
R3

[
λh(x)

(
1
4

f (u)u − F(u)
)
+

1
12

g(x)u6
]

dx

≥ 0,

and hence

cλ + o(1) ≥ Ψ(vn). (2.12)

Combining (2.8), (2.9) and (2.11), we obtain that

o(1) = ⟨I′λ(un), ξ⟩ − ⟨G′(u), ξ⟩

= (vn, ξ) + bA
∫

R3
∇vn∇ξdx −

∫
R3
(λh(x) f (vn)ξ + g(x)v5

nξ)dx + o(1)

=
∫

R3
(a∇vn∇ξ + V∞vnξ)dx + bA

∫
R3

∇vn∇ξdx −
∫

R3
(λh∞ f (vn)ξ + g(x)v5

nξ)dx + o(1)

= ⟨H′(vn), ξ⟩+ o(1), ∀ξ ∈ E,

which implies that
H′(vn) = o(1). (2.13)

Next we prove that vn → 0 in E. According to [31, Lemma 2.1], for some subsequence
of {vn}, either “vanishing” or “nonvanishing” holds. If “nonvanishing” occurs, we can find
(yn) ⊂ R3 with yn

n→ ∞ such that, for wn(x) := vn(x + yn), there is w ∈ E \ {0} satisfying

wn ⇀ w in E,

wn → w in Ls
loc(R

3) (2 ≤ s < 6),

wn(x) → w(x) a.e. x ∈ R3.

(2.14)

We claim that
L′(w) = 0, (2.15)

where

L(u) =
1
2
∥u∥2

V∞
+

bA
2

∫
R3

|∇u|2dx −
∫

R3

(
λh∞F(u) +

1
6

g∞u6
)

dx.
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Indeed, for every ξ ∈ E, set ξn(x) = ξ(x − yn). We have ∥ξn∥H1 = ∥ξ∥H1 , and hence, by (2.13)
and (2.14),

|⟨H′(vn), ξn⟩|

=

∣∣∣∣∫
R3

(
a∇vn · ∇ξn + V∞vnξn + bA∇vn · ∇ξn − λh∞ f (vn)ξn − g(x)v5

nξn
)

dx
∣∣∣∣

=

∣∣∣∣∫
R3

(
a∇wn · ∇ξ + V∞wnξ + bA∇wn · ∇ξ − λh∞ f (wn)ξ − g(x + yn)w5

nξ
)

dx
∣∣∣∣

=

∣∣∣∣∫
R3

(a∇w · ∇ξ + V∞wξ + bA∇w · ∇ξ) dx −
∫

suppξ

(
λh∞ f (w)ξ + g∞w5ξ

)
dx
∣∣∣∣+ o(1)

=
∣∣⟨L′(w), ξ⟩

∣∣+ o(1),

and

|⟨H′(vn), ξn⟩| ≤ ∥H′(vn)∥∥ξn∥ ≤ C∥H′(vn)∥∥ξn∥H1 ≤ C∥H′(vn)∥∥ξ∥H1
n−→ 0.

So (2.15) holds. From (2.15), we see that

∥w∥2
V∞

+ bA
∫

R3
|∇w|2dx =

∫
R3
(λh∞ f (w)w + g∞|w|6)dx. (2.16)

Since w ̸= 0, there exists a unique t > 0 such that tw ∈ M∞
λ , i.e.,

t2∥w∥2
V∞

+ bt4
(∫

R3
|∇w|2dx

)2

=
∫

R3
(λh∞ f (tw)tw + t6g∞|w|6)dx. (2.17)

We claim that t ≤ 1. For otherwise t > 1, then it follows from (2.17), (2.16), ( f2) and the fact
A ≥

∫
R3 |∇w|2dx that

t2∥w∥2
V∞

+ bt4
(∫

R3
|∇w|2dx

)2

< t4

[
∥w∥2

V∞
+ b

(∫
R3

|∇w|2dx
)2
]

≤ t4
(
∥w∥2

V∞
+ bA

∫
R3

|∇w|2dx
)

= t4
∫

R3
(λh∞ f (w)w + g∞|w|6)dx

≤
∫

R3
(λh∞ f (w)t4w + t6g∞|w|6)dx

≤
∫

R3

(
λh∞

f (tw)

(tw)3 t4w4 + t6g∞|w|6
)

dx

=
∫

R3
(λh∞ f (tw)tw + t6g∞|w|6)dx

= t2∥w∥2
V∞

+ bt4
(∫

R3
|∇w|2dx

)2

,

a contradiction. Thus t ≤ 1. Combining this with (2.4), (2.12), (2.13) and Fatou’s lemma, we
deduce that

cλ + o(1) ≥ Ψ(vn)−
1
4
⟨H′(vn), vn⟩

=
1
4
∥vn∥2

V∞
+
∫

R3
λh∞

(
1
4

f (vn)vn − F(vn)

)
dx +

1
12

∫
R3

g(x)|vn|6dx
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=
1
4
∥wn∥2

V∞
+
∫

R3
λh∞

(
1
4

f (wn)wn − F(wn)

)
dx +

1
12

∫
R3

g(x + yn)|wn|6dx

≥ 1
4
∥w∥2

V∞
+
∫

R3
λh∞

(
1
4

f (w)w − F(w)

)
dx +

1
12

∫
R3

g∞|w|6dx + o(1)

≥ 1
4
∥tw∥2

V∞
+
∫

R3
λh∞

(
1
4

f (tw)tw − F(tw)

)
dx +

1
12

∫
R3

g∞|tw|6dx + o(1)

= I∞
λ (tw)− 1

4
⟨I∞

λ
′(tw), tw⟩+ o(1)

= I∞
λ (tw) + o(1)

≥ m∞
λ + o(1),

which contradicts cλ < m∞
λ .

Thus, “nonvanishing” cannot occur, and then we have only the “vanishing” case. In this
case, vn → 0 in Ls(R3) (2 < s < 6), and hence, by (2.2), we see that∫

R3
h(x)F(vn)dx → 0 and

∫
R3

h(x) f (vn)vndx → 0

as n → ∞. Combining this and (2.12)–(2.13), we obtain

cλ + o(1) ≥ Ψ(vn) =
1
2
∥vn∥2

V∞
+

bA
4

∫
R3

|vn|2dx − 1
6

∫
R3

g(x)|vn|6dx + o(1), (2.18)

o(1) = ⟨H′(vn), vn⟩ = ∥vn∥2
V∞

+ bA
∫

R3
|∇vn|2dx −

∫
R3

g(x)|vn|6dx + o(1). (2.19)

Set l = limn→∞
(∫

R3 g(x)|vn|6dx
) 1

3 . If l > 0, then using (2.19) and the fact g(x) ≤ gM, we have∫
R3

g(x)|vn|6dx ≥
∫

R3
a|∇vn|2dx + b

(∫
R3

|∇vn|2dx
)2

+ o(1)

≥ aS
(∫

R3
|vn|6dx

) 1
3

+ bS2
(∫

R3
|vn|6dx

) 2
3

+ o(1)

≥ aS

g
1
3
M

(∫
R3

g(x)|vn|6dx
) 1

3

+
bS2

g
2
3
M

(∫
R3

g(x)|vn|6dx
) 2

3

+ o(1),

which implies that l ≥ bS2+
√

(bS2)2+4aSgM

2g
2
3
M

. Combining this and (2.18), (2.19), we deduce that

cλ + o(1) ≥ Ψ(vn)−
1
6
⟨H′(vn), vn⟩

≥ a
3

∫
R3

|∇vn|2dx +
b

12

(∫
R3

|∇vn|2dx
)2

≥ aS

3g
1
3
M

(∫
R3

g(x)|vn|6dx
) 1

3

+
bS2

12g
2
3
M

(∫
R3

g(x)|vn|6dx
) 2

3

≥ a
3

(
bS3 +

√
(bS3)2 + 4aS3gM

2gM

)
+

b
12

(
bS3 +

√
(bS3)2 + 4aS3gM

2gM

)2

+ o(1)

= c∗ + o(1),

which is a contradiction. Thus l = 0, which, together with (2.19), yields that vn → 0 in E.
Therefore un → u in E and the proof is complete.
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Lemma 2.4. Under the conditions of Lemma 2.3, then there exists λ1 > 0 such that c∗ < m∞
λ for

λ ∈ (0, λ1).

Proof. Suppose by contradiction that there is λn → 0 such that m∞
λn

≤ c∗ for all n. In view of
[13], m∞

λn
is attained by a positive solution un ∈ M∞

λn
such that I∞

λn
(un) = m∞

λn
. We claim that

there exist C3, C4 > 0 (independent of λ) such that C3 ≤ ∥un∥V∞ ≤ C4 for all n. Indeed, by
(2.3), we have

c∗ ≥ m∞
λn

= I∞
λn
(un)−

1
4
⟨(I∞

λn
)′(un), un⟩ ≥

1
4
∥un∥2

V∞

for all n, that is, ∥un∥2
V∞

≤ 4c∗ for all n. On the other hand, since un ∈ M∞
λn

, by condition (g1)

and (2.1), we obtain for ε ∈ (0, V∞
2h∞

),

∥un∥2
V∞

≤ λnh∞ε
∫

R3
|un|2dx + (λnh∞Cε + g∞)

∫
R3

|un|6dx

and then,
1
2
∥un∥2

V∞
≤ (h∞Cε + g∞)(aS)−3∥un∥6

V∞

for large n, which implies that

∥un∥2
V∞

≥ (aS)
3
2√

2(h∞Cε + g∞)
(2.20)

for n large. Then, noting λn → 0, we deduce that λn
∫

R3 h(x)F(un)dx = o(1) and
λn
∫

R3 h(x) f (un)undx = o(1). Hence

m∞
λn

=
1
2
∥un∥2

V∞
+

b
4

(∫
R3

|∇un|2dx
)2

− 1
6

∫
R3

g∞|un|6dx + o(1),

0 = ∥un∥2
V∞

+ b
(∫

R3
|∇un|2dx

)2

−
∫

R3
g∞|un|6dx + o(1).

(2.21)

Set limn→∞
∫

R3 |∇un|2dx = D. One has D > 0. Indeed, if D = 0, then
∫

R3 |un|6dx → 0 as
n → ∞, and thus, by (2.21), ∥un∥2

V∞
→ 0. This gives a contradiction to (2.20). It follows from

(2.21) and the definition of S that D ≥ bS3+
√

(bS3)2+4aS3g∞
2g∞

. Hence

m∞
λn

= I∞
λn
(un)−

1
6
⟨(I∞

λn
)′(un), un⟩

≥ a
3

∫
R3

|∇un|2dx +
b

12

(∫
R3

|∇un|2dx
)2

+ o(1)

≥ a
3

(
bS3 +

√
(bS3)2 + 4aS3g∞

2g∞

)
+

b
12

(
bS3 +

√
(bS3)2 + 4aS3g∞

2g∞

)2

+ o(1),

a contradiction with m∞
λn

≤ c∗ and g∞ < gM.

Corollary 2.5. Under the conditions of Lemma 2.3, for each λ ∈ (0, λ1), we have Jλ satisfies the
Palais–Smale condition for cλ < c∗.

Proof. Let {un} ⊂ S1 be a Palais–Smale sequence for Jλ. By Lemma 2.2, {mλ(un)} ⊂ Mλ is a
Palais–Smale sequence for Iλ, and then using Lemma 2.3, we deduce that wn := mλ(un) → w
in E after passing to a subsequence. Since the mapping mλ is a homeomorphism between S1

and Mλ, we see that m−1
λ is continuous. Hence un = m−1

λ (wn) → m−1
λ (w) in E. The proof is

complete.
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For ε > 0 and y ∈ Λ, let

uε,y(x) =
ψ(x)ε

1
4

(ε + |x − y|2) 1
2

,

where ψ ∈ C∞
0 (B2r0(y)) such that ψ(x) = 1 for |x − y| ≤ r0, 0 ≤ ψ(x) ≤ 1 and |∇ψ| ≤ 2. It is

well known that S is attained by the function ε1/4

(ε+|x|2)1/2 . For ε > 0 small, we have (see [22]):

∫
R3 |∇uε,y|2dx = K1 + O(ε

1
2 ),

∫
R3 |uε,y|6dx = K2 + O(ε

3
2 ) (2.22)

and ∫
R3

|uε,y|sdx =


O(ε

6−s
4 ), s ∈ (3, 6),

O(ε
3
4 | ln ε|), s = 3,

O(ε
s
4 ), s ∈ [2, 3),

(2.23)

where K1, K2 are positive constants and S = K1/K1/3
2 .

Lemma 2.6. Assume that conditions (V), (h), ( f1), ( f3) and (g3) are satisfied. Then there exist C0,
ε0 > 0 independent of y ∈ Λ such that for ε ∈ (0, ε0), supt≥0 Iλ(tuε,y) ≤ c∗ − C0ε

1
2 .

Proof. For y ∈ Λ, we get∫
R3

g(x)|uε,y|6dx =
∫

R3
(g(x)− g(y))|uε,y|6dx +

∫
R3

gM|uε,y|6dx. (2.24)

By (g3), there exist r1 ∈ (0, 2r0) and C > 0 such that |g(x)− g(y)| ≤ C|x − y|ρ for |x − y| < r1

and for y ∈ Λ. Then we have∫
R3

|g(x)− g(y)||uε,y|6dx =
∫
|x−y|≤2r0

|g(x)− g(y)||uε,y|6dx

≤
∫
|x−y|<r1

C|x − y|ρ ε
3
2

(ε + |x − y|2)3 dx

+
∫

r1≤|x−y|≤2r0

2gMε
3
2

(ε + |x − y|2)3 dx

≤ C
∫ r1

0

ε
3
2 r2+ρ

(ε + r2)3 dr + C
∫ 2r0

r1

ε
3
2 r2

(ε + r2)3 dr

≤ Cε
ρ
2

∫ r1√
ε

0

r2+ρ

(1 + r2)3 dr + C
∫ 2r0√

ε

r1√
ε

r2

(1 + r2)3 dr

≤ C5h(ε), (2.25)

where

h(ε) =


ε

ρ
2 , 1 ≤ ρ < 3,

ε
3
2 | ln ε|, ρ = 3,

ε
3
2 , ρ > 3.

From (2.24) and (2.25), we obtain that∫
R3

g(x)|uε,y|6dx = gM

∫
R3

|uε,y|6dx + O(h(ε)). (2.26)
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It follows from (2.22) and (2.23) that there exists ε1 > 0 (independent of y ∈ Λ) such that for
ε ∈ (0, ε1),∫

R3
|∇uε,y|2dx ≤ 3K1

2
, ∥uε,y∥2 ≤ 3aK1

2
,

∫
R3

g(x)|uε,y|6dx ≥ g0K2

2
.

Then, using (2.3),

Iλ(tuε,y) ≤
t2

2
∥uε,y∥2 +

bt4

4

(∫
R3

|∇uε,y|2dx
)2

− t6

6

∫
R3

g(x)|uε,y|6dx

≤ 3aK1

4
t2 +

9bK2
1

16
t4 − g0K2

12
t6,

which implies that there are t1 > 0 small and t2 > 0 large (independent of ε) such that

sup
t∈[0,t1]∪[t2,+∞)

Iλ(tuε,y) ≤
c∗

2
. (2.27)

Set Bε =
∫

R3 |∇uε,y|2dx

(
∫

R3 g(x)|uε,y|6dx)
1/3 . By (2.26) and (2.22), we have

Bε =
K1 + O(ε

1
2 )

(gMK2 + O(h(ε)))
1
3
≤ S

g
1
3
M

+ O(ε
1
2 ). (2.28)

Take k(t) = a
2 t2∥∇uε,y∥2

2 +
b
4 t4∥∇uε,y∥4

2 − t6

6

∫
R3 g(x)|uε,y|6dx. Then

k′(t) = t
(

a∥∇uε,y∥2
2 + bt2∥∇uε,y∥4

2 − t4
∫

R3
g(x)|uε,y|6dx

)
,

and k attains its maximum at

t0 =

b∥∇uε,y∥4
2 +

√
b2∥∇uε,y∥8

2 + 4a∥∇uε,y∥2
2

∫
R3 g(x)|uε,y|6dx

2
∫

R3 g(x)|uε,y|6dx


1
2

.

A direct calculation shows that

max
t≥0

k(t) = k(t0)

=
a∥∇uε,y∥2

2

(
b∥∇uε,y∥4

2 +
√

b2∥∇uε,y∥8
2 + 4a∥∇uε,y∥2

2

∫
R3 g(x)|uε,y|6dx

)
6
∫

R3 g(x)|uε,y|6dx

+
b∥∇uε,y∥4

2

(
b∥∇uε,y∥4

2 +
√

b2∥∇uε,y∥8
2 + 4a∥∇uε,y∥2

2

∫
R3 g(x)|uε,y|6dx

)2

12
(
2
∫

R3 g(x)|uε,y|6dx
)2

=
a
3

(
bB3

ε +
√

b2B6
ε + 4aB3

ε

2

)
+

b
12

(
bB3

ε +
√

b2B6
ε + 4aB3

ε

2

)2

≤ a
3

(
bS3 +

√
(bS3)2 + 4agMS3

2gM

)
+

b
12

(
bS3 +

√
(bS3)2 + 4agMS3

2gM

)2

+ Cε
1
2

= c∗ + Cε
1
2
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by (2.28). Hence, there exist C0 > 0 and ε2 ∈ (0, ε1) (independent of y ∈ Λ) such that for
ε ∈ (0, ε2),

sup
t∈[t1,t2]

Iλ(tuε,y) ≤ sup
t≥0

k(t) +
t2
2
2

∫
R3

V(x)|uε,y|2dx − inf
t∈[t1,t2]

λ
∫

R3
h(x)F(tuε,y)dx

≤ c∗ + C0ε
1
2 − inf

t∈[t1,t2]
λ
∫

R3
h0F(tuε,y)dx. (2.29)

From ( f3), for any L > 0, there is RL > 0 such that F(u) ≥ L|u|4 for all u ≥ RL. Now choosing
ε0 ∈

(
0, min

{
ε2, r2

0,
( t1√

2RL

)4}), we have for ε ∈ (0, ε0),

uε,y(x) =
ε

1
4

(ε + |x − y|2) 1
2
≥ 1

√
2ε

1
4

, ∀|x − y| ≤
√

ε,

and then,

inf
t∈[t1,t2]

∫
R3

F(tuε,y)dx ≥ inf
t∈[t1,t2]

∫
|x−y|≤

√
ε

F(tuε,y)dx

≥ Lt4
1

4ε

∫
|x−y|≤

√
ε

dx

=
1
4

Lt4
1ε

1
2

∫
|x|≤1

dx,

which, together with (2.29), shows that

sup
t∈[t1,t2]

Iλ(tuε,y) ≤ c∗ + C0ε
1
2 − λh0

4
Lt4

1ε
1
2

∫
|x|≤1

dx.

Choosing L > 0 large enough, we derive that there exists ε0 ∈ (0, ε2) uniformly in y such
that for ε ∈ (0, ε0), supt∈[t1,t2]

Iλ(tuε,y) ≤ c∗ − C0ε
1
2 . Combining this and (2.27), we get the

conclusion.

3 Proof of Theorem 1.1

In this section, we suppose all the conditions of Theorem 1.1 are satisfied. Define

Î(u) =
1
2
∥u∥2 +

b
4

(∫
R3

|∇u|2dx
)2

− 1
6

∫
R3

g(x)|u|6dx

for u ∈ E. The following lemma plays a key role in proving Theorem 1.1.

Lemma 3.1. There exists λ0 ∈ (0, λ1) such that if λ ∈ (0, λ0), then
∫

R3
x
|x| |u|

6dx ̸= 0 for all u ∈ S1

with Jλ(u) < c∗.

Proof. We adapt an argument in [27]. Assume by contradiction that there exist λn ↓ 0 and
{un} ⊂ S1 such that Jλn(un) < c∗ and

∫
R3

x
|x| |un|6dx = 0. By Lemma 2.1, there exists tn > 0

such that vn := tnun ∈ Mλn . Then one has Iλn(vn) = Jλn(un) < c∗ and
∫

R3
x
|x| |vn|6dx = 0.

Since {vn} ⊂ Mλ, it follows from Lemma 2.1 (ii) that {vn} is bounded, and then, by λn → 0,

λn

∫
R3

h(x)F(vn)dx = o(1) and λn

∫
R3

h(x) f (vn)vndx = o(1).
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Therefore,

c∗ ≥ Î(vn) + o(1) and ⟨ Î′(vn), vn⟩ = o(1). (3.1)

Take l = limn→∞
(∫

R3 g(x)|vn|6dx
) 1

3 . By the proof of (ii) of Lemma 2.1, one infers that ∥vn∥6 ≥
C for each n ∈ N and some constant C > 0. Therefore, l > 0, which, jointly with (3.1) and the

fact g(x) ≤ gM for all x ∈ R3, we deduce that l ≥
(
bS2 +

√
(bS2)2 + 4aSgM

)
/2g

2
3
M, and hence

c∗ + o(1) ≥ Î(vn)−
1
6
⟨ Î′(vn), vn⟩

=
a
3

∫
R3

|∇vn|2dx +
1
3

∫
R3

V(x)|vn|2dx +
b

12

(∫
R3

|∇vn|2dx
)2

≥ aS
3

(∫
R3

|vn|6dx
) 1

3

+
bS2

12

(∫
R3

|vn|6dx
) 2

3

≥ aS

3g
1
3
M

(∫
R3

g(x)|vn|6dx
) 1

3

+
bS2

12g
2
3
M

(∫
R3

g(x)|vn|6dx
) 2

3

≥ aS

3g
1
3
M

l +
bS2

12g
2
3
M

l2 + o(1)

≥c∗ + o(1),

which implies that
∫

R3 V(x)|vn|2dx → 0,
∫

R3 |∇vn|2dx → bS3+
√

(bS3)2+4aS3gM
2gM

and

lim
n→∞

(∫
R3

g(x)|vn|6dx
) 1

3

= lim
n→∞

(∫
R3

gM|vn|6
) 1

3

=
bS2 +

√
(bS2)2 + 4aSgM

2g
2
3
M

. (3.2)

Set wn = vn/|vn|6. Then
∫

R3 |∇wn|2dx → S and
∫

R3 |wn|6dx = 1. From [22, Theorem 1.41],

there exist w ∈ E, {zn} ⊂ R3 and µn ∈ (0,+∞) such that ∥µ
1
2
n wn(µnx + zn)− w∥D1,2 → 0 up to

a subsequence, i.e., ∥∥∥∥∥∥wn −
1

µ
1
2
n

w
(

x − zn

µn

)∥∥∥∥∥∥
D1,2

n−→ 0. (3.3)

Hence
∫

R3 |∇w|2dx = S and
∫

R3 |w|6dx = 1, i.e., S is achieved by w. From [21], the minimizers
of S are of the form c0

(1+h0(x−x0)2)
1
2

, where c0 ̸= 0, h0 > 0 and x0 ∈ R3. Thus∥∥∥∥∥∥wn −
c0µ

1
2
n(

µ2
n + h2

0| · −zn − x0µn|2
) 1

2

∥∥∥∥∥∥
D1,2

n−→ 0. (3.4)

Observing g(0) < gM, we see that there is δ > 0 such that g(x) ≤ g(0)+gM
2 for |x| ≤ δ. We

distinguish two cases.

Case 1. µn → µ0 ∈ (0,+∞] as n → ∞.
Since

∫
R3 V(x)|vn|2dx → 0 and V(x) ≥ V0(> 0), one has

∫
R3 |vn(x)|2dx → 0, and hence∫

R3 |wn(x)|2dx → 0 (n → ∞). Setting x = µny + zn, it follows that

µ2
n

∫
R3

|µ
1
2
n wn(µny + zn)|2dy → 0.
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This, together with the fact µn → µ0 ∈ (0,+∞] and (3.3), gives
∫

R3 |w|2dx = 0, which is a
contradiction.

Case 2. µn → 0 as n → ∞. We will further consider two cases.
(i) |zn| ≤ δ for large n.
Letting zn → z0 (n → ∞), then |z0| ≤ δ and g(z0) ≤ g(0)+gM

2 . It follows from (3.2) and (3.3)
that

o(1) =
∫

R3
(gM − g(x))|wn|6dx

=
∫

R3
(gM − g(x))

∣∣∣∣ 1
µ2

n
w
(

x − zn

µn

)∣∣∣∣6 dx + o(1)

=
∫

R3
(gM − g(µnx + zn))|w|6dx + o(1).

Using the Lebesgue dominated convergence theorem, we have

0 =
∫

R3
(gM − g(z0))|w|6dx ≥ gM − g(0)

2

∫
R3

|w|6dx =
gM − g(0)

2
> 0,

a contradiction.
(ii) There is a subsequence {znk} ⊂ {zn} such that |znk | ≥ δ for all k. Without loss of

generality, we assume that |zn| ≥ δ for all n. Since
∫

R3
x
|x| |vn|6dx = 0, one has

∫
R3

x
|x| |wn|6dx =

0. Hence, by (3.4),

o(1) =
∫

R3

x
|x|

c6
0µ3

n(
µ2

n + h2
0|x − zn − x0µn|2

)3 dx

=
∫

R3

(
x
|x| −

zn + x0µn

|zn + x0µn|

)
c6

0µ3
n(

µ2
n + h2

0|x − zn − x0µn|2
)3 dx

+
zn + x0µn

|zn + x0µn|

∫
R3

c6
0µ3

n(
µ2

n + h2
0|x − zn − x0µn|2

)3 dx. (3.5)

Since µn → 0 and |zn| ≥ δ for all n, we have

|zn + x0µn| ≥ |zn| − µn|x0| ≥
δ

2

for large n. Combining this and the fact∣∣∣∣ x
|x| −

z
|z|

∣∣∣∣ ≤ |x(|z| − |x|) + |x|(x − z)|
|x||z| ≤ 2|x − z|

|z|

for all x, z ∈ R3 \ {0}, we deduce that∫
|x−(zn+x0µn)|≤µn

∣∣∣∣ x
|x| −

zn + x0µn

|zn + x0µn|

∣∣∣∣ c6
0µ3

n(
µ2

n + h2
0|x − zn − x0µn|2

)3 dx

≤
∫
|x−(zn+x0µn)|≤µn

2|x − (zn + x0µn)|
|zn + x0µn|

c6
0µ3

n(
µ2

n + h2
0|x − zn − x0µn|2

)3 dx

≤ 4µn

δ

∫
R3

c6
0(

1 + h2
0|x|2

)3 dx

≤ C6µn (3.6)
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and ∫
|x−(zn+x0µn)|≥µn

∣∣∣∣ x
|x| −

zn + x0µn

|zn + x0µn|

∣∣∣∣ c6
0µ3

n(
µ2

n + h2
0|x − zn − x0µn|2

)3 dx

≤ 2
|zn + x0µn|

∫
|x−(zn+x0µn)|≥µn

c6
0µ3

n|x − (zn + x0µn)|(
µ2

n + h2
0|x − zn − x0µn|2

)3 dx

≤ 4µn

δ

∫
|x|≥1

c6
0|x|(

1 + h2
0|x|2

)3 dx

≤ C7µn. (3.7)

Hence we obtain, by (3.5)–(3.7),

0 = lim
n→∞

∣∣∣∣∣ zn + x0µn

|zn + x0µn|

∫
R3

c6
0µ3

n(
µ2

n + h2
0|x − zn − x0µn|2

)3 dx

∣∣∣∣∣
=
∫

R3

c6
0(

1 + h2
0|x|2

)3 dx > 0,

which is a contradiction.

To prove Theorem 1.1, we recall a multiplicity result for critical points involving Ljusternik–
Schnirelman category, which has been widely used in dealing with semilinear elliptic equa-
tions.

Lemma 3.2 (see Proposition 2.4 in [1]). Let M be a Hilbert manifold and I ∈ C1(M, R). If there exist
c0∈R and k∈N such that I(u) satisfies the (PS) condition for c≤c0 and cat({u ∈ M : I(u)≤c0}) ≥
k, then I(u) admits at least k critical points in {u ∈ M : I(u) ≤ c0}.

Lemma 3.3 (see Theorem 2.5 in [1]). Let X be a topological space. Assume that there exist two
continuous mappings

F : S2 =
{

y ∈ R3 : |y| = 1
}
→ X, G : X → S2

such that G ◦ F is homotopic to identity, that is, there is a continuous mapping ζ : [0, 1]× S2 → S2

such that ζ(0, x) = (G ◦ F)(x) for x ∈ S2 and ζ(1, x) = x for x ∈ S2. Then cat(X) ≥ 2.

Proof of Theorem 1.1. Let λ ∈ (0, λ0) with λ0 given in Lemma 3.1. Take y = 3
2 ρ0z, where

ρ0 is the constant given in (g2) and z ∈ S2. Let r1 < 1
4 ρ0. By (g2), one has g(x) = gM for

|x − 3
2 ρ0z| ≤ 2r1. Noting

uε,y(x) =
ψ(x)ε

1
4

(ε + |x − 3
2 ρ0z|2) 1

2
,

where ψ ∈ C∞
0 (B2r1(

3
2 ρ0z)) such that ψ(x) = 1 for |x − 3

2 ρ0z| ≤ r1 and 0 ≤ ψ(x) ≤ 1, we
deduce that ∫

R3
g(x)|uε,y|6dx =

∫
|x− 3

2 ρ0z|<2r1

g(x)|uε,y|6dx

= gM

∫
|x− 3

2 ρ0z|<2r1

|uε,y|6dx

= gM

∫
R3

|uε,y|6dx.
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Arguing as in the proof of Lemma 2.6, we still conclude that supt≥0 Iλ(tuε,y) ≤ c∗ − C0ε
1
2 .

Set h(t) = Iλ

( tuε,y
∥uε,y∥

)
, where t > 0 and ε ∈ (0, ε0) with ε0 given in Lemma 2.6. It follows from

Lemma 2.1 that h(t) attains its maximum at a unique point ty and tyuε,y ∈ Mλ. By Lemma 2.6,

Jλ

(
uε,y

∥uε,y∥

)
= Iλ(tyuε,y) = sup

t≥0
Iλ(tuε,y) ≤ c∗ − C0ε

1
2 < c∗.

Define F : S2 → S1 by F(z) = uε,y
∥uε,y∥ . Then

F : S2 → {u ∈ S1 : Jλ(u) < c∗} .

Let G : {u ∈ S1 : Jλ(u) < c∗} → S2 by G(u) =

∫
R3

x
|x| |u|

6dx∣∣∣∫R3
x
|x| |u|6dx

∣∣∣ . Then G is well defined and

continuous by virtue of Lemma 3.1. Define ζ(θ, z) : [0, 1] × S2 → S2 such that ζ(θ, z) =

G
( u(1−θ)ε,y
∥u(1−θ)ε,y∥

)
for θ ∈ [0, 1) and ζ(1, z) = z. It follows from (2.22) that

lim
θ→1−

∫
R3

x
|x| |u(1−θ)ε,y|6dx

= lim
θ→1−

∫
R3

(
x
|x| −

3
2 ρ0z
| 3

2 ρ0z|

)
|u(1−θ)ε,y|6dx + lim

θ→1−

3
2 ρ0z
| 3

2 ρ0z|

∫
R3

|u(1−θ)ε,y|6dx

= lim
θ→1−

∫
R3

(
x
|x| −

3
2 ρ0z
| 3

2 ρ0z|

)
|u(1−θ)ε,y|6dx + K2z. (3.8)

Since |u(1−θ)ε,y|6 ≤ ((1−θ)ε)
3
2

((1−θ)ε+|x− 3
2 ρ0z|2)

3 and since
∣∣∣ x
|x| −

3
2 ρ0z
| 3

2 ρ0z|

∣∣∣ ≤ 2|x− 3
2 ρ0z|

| 3
2 ρ0z| , we deduce that

∫
|x− 2

3 ρ0z|≤
√

(1−θ)ε

∣∣∣∣∣ x
|x| −

3
2 ρ0z
| 3

2 ρ0z|

∣∣∣∣∣ |u(1−θ)ε,y|6dx

≤
∫
|x− 2

3 ρ0z|≤
√

(1−θ)ε

4
∣∣x − 2

3 ρ0z
∣∣

3ρ0

1

((1 − θ)ε)
3
2

(
1 +

∣∣∣∣ x− 2
3 ρ0z√

(1−θ)ε

∣∣∣∣2
)3 dx

≤ 4
√
(1 − θ)ε

3ρ0

∫
|x|≤1

1

(1 + |x|2)3 dx

≤ C8

√
(1 − θ)ε (3.9)

and ∫
|x− 2

3 ρ0z|≥
√

(1−θ)ε

∣∣∣∣∣ x
|x| −

3
2 ρ0z
| 3

2 ρ0z|

∣∣∣∣∣ |u(1−θ)ε,y|6dx

≤ 4
3ρ0

∫
|x− 2

3 ρ0z|≥
√

(1−θ)ε

∣∣x − 3
2 ρ0z

∣∣
((1 − θ)ε)

3
2

(
1 +

∣∣∣∣ x− 2
3 ρ0z√

(1−θ)ε

∣∣∣∣2
)3 dx

≤ 4
√
(1 − θ)ε

3ρ0

∫
|x|≥1

|x|
(1 + |x|2)3 dx

≤ C9

√
(1 − θ)ε. (3.10)
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Combining (3.8)–(3.10), we have

lim
θ→1−

∫
R3

x
|x| |u(1−θ)ε,y|6dx = K2z,

which, together with the continuous of G, gives that ζ ∈ C([0, 1]× S2, S2). Noting ζ(0, z) =

G
( uε,y
∥uε,y∥

)
= G ◦ F(z) and ζ(1, z) = z for z ∈ S2, one has G ◦ F : S2 → S2, z → G ◦ F(z) is

homotopic to the identity. Thus, by Lemma 3.3,

cat
{

u ∈ S1 : Jλ(u) ≤ c∗ − C0ε
1
2

}
≥ 2.

Therefore, using Corollary 2.5 and Lemma 3.2, we deduce that Jλ has at least two nontrivial
critical points, and thus Iλ has at least two nontrivial critical points. This completes the
proof.

4 Proof of Theorem 1.2

In this section, we suppose that all the conditions of Theorem 1.2 are satisfied. By (g1), there
is R0 > 0 such that g(x) ≤ 1

2 (gM + g∞) for all |x| ≥ R0. For any d > 0, let ρ = ρ(d) > R0 be
such that Λd ⊂ Bρ(0). Define χ : R3 → R3 as χ(x) = x for |x| ≤ ρ and χ(x) = ρx/|x| for
|x| > ρ. We consider the barycenter map β : E \ {0} → R3 given by

β(u) =

∫
R3 χ(x)|u(x)|6dx∫

R3 |u(x)|6dx
.

Since Λd ⊂ Bρ(0), by the definition of χ and Lebesgue’s theorem, we have the following
conclusion.

Lemma 4.1. For any d > 0, there exists λd > 0 such that, if λ ∈ (0, λd) and u ∈ S1 with Jλ(u) < c∗,
then β(u) ∈ Λd.

Proof. Arguing indirectly, we assume that there exist d0 > 0, λn ↓ 0 and (un) ⊂ S1 with
Jλn(un) < c∗, but β(un) ̸∈ Λd0 . From Lemma 2.1, there exists a unique tn > 0 such that
tnun ∈ Mλn . Take vn = tnun and wn = vn/|vn|6. Following the steps contained in the proof of
Lemma 3.1, we deduce∫

R3
|∇wn|2dx → S,

∫
R3

|wn|6dx = 1 and
∫

R3
g(x)|wn|6dx → gM. (4.1)

So, there exist {zn} ⊂ R3, µn ∈ (0,+∞) and w ∈ D1,2(R3) such that∥∥∥∥∥∥wn −
1

µ
1
2
n

w
(

x − zn

µn

)∥∥∥∥∥∥
D1,2

→ 0 (n → ∞). (4.2)

Thus
∫

R3 |∇w|2dx = S and
∫

R3 |w|6dx = 1. Arguing as in Lemma 3.1 (Case 1), if µn → µ0 ∈
(0,+∞] (n → ∞), one obtains a contradiction. Hence µn → 0 as n → ∞, and we distinguish
into two cases.

Case 1. µn → 0 as n → ∞ and |zn| ≤ R0 for large n. Suppose that zn → z0 as n → ∞. Then
|z0| ≤ R0 and χ(z0) = z0. Applying (4.1), (4.2) and the Lebesgue dominated convergence



Multiplicity of Kirchhoff-type equation with critical growth 21

theorem, we obtain

gM = lim
n→∞

∫
R3

g(x)

∣∣∣∣∣∣ 1

µ
1
2
n

w
(

x − zn

µn

)∣∣∣∣∣∣
6

dx

= lim
n→∞

∫
R3

g(µnx + zn)|w|6dx

= g(z0)
∫

R3
|w|6dx

= g(z0),

which implies that z0 ∈ Λ. Moreover, by (4.2) and using the fact χ(z0) = z0, we conclude that

β(wn) =
∫

R3
χ(x)|wn|6dx

=
∫

R3
χ(x)

∣∣∣∣∣∣ 1

µ
1
2
n

w
(

x − zn

µn

)∣∣∣∣∣∣
6

dx + o(1)

=
∫

R3
χ(µnx + zn)|w|6dx + o(1)

= z0

∫
R3

|w|6dx + o(1)

= z0 + o(1),

which, together with z0 ∈ Λ, yields that β(wn) ∈ Λd0 for large n. This contradicts the assump-
tion that β(wn) = β(un) ̸∈ Λd0 for all n.

Case 2. µn → 0 as n → ∞ and there exits a subsequence of {zn} (still denoted by {zn}) such
that |zn| ≥ R0 for all n. Applying (4.1) and (4.2), we deduce that

o(1) =
∫

R3
(gM − g(x))|wn|6dx

=
∫

R3
(gM − g(x))

∣∣∣∣∣∣ 1

µ
1
2
n

w
(

x − zn

µn

)∣∣∣∣∣∣
6

dx + o(1)

=
∫

R3
(gM − g(µnx + zn))|w|6dx + o(1).

Recall that g(x) ≤ 1
2 (g∞ + gM) for |x| ≥ R0. It follows from the Lebesgue dominated conver-

gence theorem that

0 = lim
n→∞

∫
R3
(gM − g(µnx + zn))|w|6dx ≥ 1

2
(gM − g∞)

∫
R3

|w|6dx =
1
2
(gM − g∞) > 0,

which is a contradiction.

Now we are in a position to show that problem (1.1) admits at least catΛd(Λ) solutions. For
this aim, we compare the topology of Λ and the topology of a suitable energy sublevel, and
use the maps Jλ and β as they are introduced before. Moreover, we shall utilize a multiplicity
result for critical points involving Lusternik–Schnirelmann category, e.g. see [15].
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Lemma 4.2 (see [15]). Let M be a C1,1 complete Riemannian manifold (modelled on a Hilbert space)
and assume that Φ ∈ C1(M, R) bounded from below and satisfies −∞ < infM Φ < a < b < +∞.
Suppose that Φ satisfies the Palais–Smale condition on the sublevel {u ∈ M : Φ(u) ≤ b} and that
a is not a critical level for Φ. Then Φ has at least catΦa(Φa) critical points in Φa, where Φa :=
{u ∈ M : Φ(u) ≤ a}.

Lemma 4.3 (see [3, 4]). Let A, B, M be closed sets with A ⊂ B. Let F : A → M and G : M → B be
two continuous maps such that G ◦ F is homotopically equivalent to the embedding J : A → B. Then
catM(M) ≥catB(A).

Remark 4.4. Since Mλ is not a C1 submanifold of E, we can not apply Lemma 4.2 directly.
Fortunately, from Lemma 2.1, we know that the mapping mλ is a homeomorphism between
Mλ and S1, but S1 is a C1 submanifold of E. Thus we can apply Lemma 4.2 to Jλ(u) =

Iλ(m̂λ(u)) |S1 = Iλ(mλ(u)), where Jλ is given in Lemma 2.2.

Proof of Theorem 1.2. For any d > 0, let λ ∈ (0, min {λ1, λd}) with λ1 is given in Lemma 2.4
and λd is given in Lemma 4.1. It is easy to see that S1 is a C1,1 complete Riemann manifold
and Jλ ∈ C1(S1, R) is bounded from below. Set l(t) = Iλ(tuε,y), where t > 0, y ∈ Λ and
ε ∈ (0, ε0) with ε0 is given in Lemma 2.6. In view of Lemma 2.1, l(t) admits its maximum at a
unique point ty and tyuε,y ∈ Mλ. Hence, by Lemma 2.6,

Jλ

(
uε,y

∥uε,y∥

)
= Iλ(tyuε,y) = sup

t≥0
Iλ(tuε,y) ≤ c∗ − η0, (4.3)

where η0 > 0 is a constant independent of y ∈ Λ. From Corollary 2.5, we see that Jλ sat-
isfies the (PS) condition on {u ∈ S1 : Jλ(u) < c∗}. Therefore, by Lemma 4.2, Jλ has at least
catS1(η0)(S1(η0)) critical points, where S1(η0) = {u ∈ S1 : Jλ(u) ≤ c∗ − η0}.

Define the mappings F : Λ → S1 and G : S1(η0) → R3 by

F(y) =
uε,y

∥uε,y∥
, G(u) = β(u).

Then F and G are continuous. It follows from Lemma 4.1 and (4.3) that F(Λ) ⊂ S1(η0) and
G(S1(η0)) ⊂ Λd. Define ξ : [0, 1]× Λ → Λd by

ξ(θ, y) =

G
(

u(1−θ)ε,y
∥u(1−θ)ε,y∥

)
, θ ∈ [0, 1),

y, θ = 1.

Noting y ∈ Λ ⊂ Bρ(0), we obtain χ(y) = y and

lim
θ→1−

G

(
u(1−θ)ε,y

∥u(1−θ)ε,y∥

)
= lim

θ→1−

∫
R3 χ(x)|u(1−θ)ε,y|6dx∫

R3 |u(1−θ)ε,y|6dx

= lim
θ→1−

∫
R3

χ
(√

(1−θ)εz+y
)∣∣∣ψ(√(1−θ)εz+y

)∣∣∣6
(1+|z|2)3 dz∫

R3

∣∣∣ψ(√(1−θ)εz+y
)∣∣∣6

(1+|z|2)3 dz

= y.

Thus ξ ∈ C([0, 1] × Λ, Λd). Then we see that ξ(θ, y) with (θ, y) ∈ [0, 1] × Λ is a homo-
topy between G ◦ F and the inclusion map j : Λ → Λd. This fact and Lemma 4.3 yield
catS1(η0)(S1(η0)) ≥catΛd(Λ). Hence, Jλ has at least catΛd(Λ) critical points. Then, in view of
Lemma 2.2 (iii), we conclude that Iλ has at least catΛd(Λ) nontrivial critical points. Thus,
problem (1.1) has at least catΛd(Λ) nontrivial solutions. This completes the proof.
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