
Electronic Journal of Qualitative Theory of Differential Equations
2025, No. 10, 1–18; https://doi.org/10.14232/ejqtde.2025.1.10 www.math.u-szeged.hu/ejqtde/

Periodic solutions in a linear delay difference system

Dedicated to the memory of Professor István Győri (1943–2022)
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Abstract. The paper investigates periodicity properties of a linear autonomous differ-
ence system with two delayed terms. Assuming that the system matrices are simultane-
ously triangularizable, we formulate necessary and sufficient conditions guaranteeing
the existence of a nonzero periodic solution (with an a priori given period) of the stud-
ied system. The analytical form of such conditions is shown to generalize the existing
results on this topic. Moreover, it is supported by a geometric reformulation, offering
a better understanding of the derived periodicity conditions. Information on the form
of the searched periodic solution (including its prime period) is also provided.

Keywords: difference equation, delay, periodic solution.

2020 Mathematics Subject Classification: 39A23, 39A06.

1 Introduction and preliminaries

The study of periodic solutions in differential and difference systems belongs among frequent
research topics. It is well known that the appearance of periodic solutions forms an important
part of the bifurcation analysis of dynamical systems that is often accompanied by other in-
teresting phenomena (such as the loss of asymptotic stability of the corresponding equilibria).
There are various methods for detecting a periodic behavior in the studied systems, often
based on fixed-point theorems. Since the procedures utilizing this approach do not usually
give analytical expressions of the searched periodic solutions, other methods were found and
applied to obtain the desired expressions (see, e.g., the Carvalho method, initially developed
for delay differential equations but applicable also to discrete equations [6, 7, 14]). We refer to
[2, 8–12,17–19, 21,22] for a survey of some results and techniques used in the existence theory
of periodic solutions.

In the autonomous linear case, the problem of the existence of periodic solutions is related
to the existence of a specific characteristic root. In particular, the delay differential system

y′(t) +
k

∑
s=1

Asy(t − s) = 0, t ∈ R+,
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where As ∈ Rd×d, has a q-periodic solution y : R+ → Rd (i.e., a solution satisfying y(t + q) =
y(t) for all t ∈ R+ and some q ∈ R+) if and only if the corresponding characteristic quasi-
polynomial

F(λ) = det
(

λI +
k

∑
s=1

exp(−λs)As

)
(I being the identity matrix) has a pure imaginary root. Similarly, the difference system

x(n) +
k

∑
s=1

Asx(n − s) = 0, n ∈ Z+, (1.1)

As ∈ Rd×d, admits a q-periodic solution x : Z+ → Rd (i.e., a solution satisfying x(n + q) =

x(n) for all n ∈ Z+ and some q ∈ Z+) if and only if the family of roots of

P(λ) = det
(

λk I +
k

∑
s=1

λk−s As

)
involves a q-th root of unity. That is, there exists a root λj,q of P in the form

λj,q = exp
(

i
2π j

q

)
for some j =

⌊
− q

2

⌋
+ 1,

⌊
− q

2

⌋
+ 2, . . . ,

⌊ q
2

⌋
. (1.2)

However, converting these theoretical conditions into efficient forms is usually regarded as
questionable, therefore other approaches are preferred.

The aim of this paper is to pose arguments supporting a deeper analysis of the above
stated polynomial properties when detecting a periodic behavior of the studied systems. To
do this, we consider a particular case of the difference system (1.1) and apply a simple method
converting the above polynomial condition into a more efficient form. In the sequel, we precise
what is meant by this particular case.

If k = 1 in (1.1), then the roots of P are eigenvalues of the only system matrix, namely
−A1. Thus, (1.1) with k = 1 admits a periodic solution just when −A1 (hence also A1) has
an eigenvalue with a unitary modulus and a rational argument. We can take this classical
result as a pattern for our next investigations, and search for periodicity conditions in terms
of eigenvalues of the system matrices.

Further, we consider (1.1) with two nonzero system matrices, i.e., the system

x(n) + Ax(n − m) + Bx(n − k) = 0 (1.3)

with A, B ∈ Rd×d and coprime k, m ∈ Z+, k > m (note that if gcd(k, m) > 1, then (1.3) can
be easily converted to the case with coprime delays). Now, the characteristic polynomial P
becomes

P∗(λ) = det(λk I + λk−m A + B).

Contrary to the case k = 1, the formulation of efficient conditions on eigenvalues of A, B, en-
suring that P∗ has a root (1.2), seems to be extremely complicated (and perhaps lying beyond
theoretical possibilities). Therefore, other methods have been developed to detect a periodic
behavior in (1.3). In particular, the paper [10] successfully employed the method of circu-
lant matrices and, for specific choices A = −I and m = 1, extended some earlier results
(see, e.g., [15, 16]) to obtain complete periodicity conditions for the studied system. We recall
Theorem 4.1 of [10] as the most relevant result to the topic of our paper.
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Theorem 1.1. The system (1.3) with A = −I and m = 1 has a nontrivial periodic solution x if and
only if at least one of the following conditions holds:

(a) B has a zero eigenvalue or has a real eigenvalue β = b such that

b ∈
{

2(−1)ℓ sin
(
(2ℓ+ 1)π
2(2k − 1)

)
, ℓ = 0, 1, . . . , k − 1

}
; (1.4)

(b) B has a pure imaginary eigenvalue β = ib (b ∈ R) such that

b ∈
{

2(−1)ℓ sin
(

ℓπ

2k − 1

)
, ℓ = 1, . . . , 2k − 2

}
; (1.5)

(c) B has a complex eigenvalue β = b exp(iϕ) (b, ϕ ∈ R, |ϕ| < π/2) such that, for some positive
integers ξ < η,

|ϕ| = ξπ

2η
and b ∈

{
2(−1)ℓ sin

(
(η − ξ)π

2η(2k − 1)
+

ℓπ

2k − 1

)
, ℓ = 0, 1, . . . , 2k − 2

}
. (1.6)

Following the conclusions of Theorem 1.1, we return to the characteristic polynomial ap-
proach. In particular, we show that Theorem 1.1 can be obtained from the root analysis of
P∗ as well, and moreover, this analysis appears to be applicable also in some more general
situations. In fact, it utilizes a straightforward procedure how to simplify the form of P∗ un-
der a specific restriction imposed on A, B, namely their simultaneous triangularizability. This
property assumes the existence of a regular matrix T such that both T−1AT and T−1BT are
upper triangular. The existence of such a matrix T is guaranteed whenever A, B are com-
muting (for some less restrictive conditions on A, B, see, e.g., [3]). Notice that the matrices
A = −I and B considered in Theorem 1.1 obviously share this property. Further, if A, B are
simultaneously triangularizable, then, after a few straightforward computational steps, one
can decompose P∗ into a significantly simpler form, namely

P∗∗(λ) =
d

∏
i=1

(λk + αiλ
k−m + βi), (1.7)

where (αi, βi) ∈ C2, i = 1, . . . , d, are simultaneously ordered couples of eigenvalues of A, B
(i.e., couples involving mutually corresponding diagonal elements of the matrices T−1AT
and T−1BT, respectively). Thus, (1.3) with simultaneously triangularizable matrices A, B has
a q-periodic solution x if and only if at least one of the trinomials involved in the product (1.7)
has a root of the form (1.2).

To summarize the previous considerations, the mathematical core of discussions on the
existence of periodic solutions of (1.3) with simultaneously triangularizable A, B consists in
analyzing the following problem: Find conditions under which a complex trinomial

Q(λ) = λk + αλk−m + β (1.8)

admits a root (1.2).
Based on the previous notes, the paper is organized as follows. In Section 2, we consider

(1.3) with simultaneously triangularizable A, B, and formulate a general result on the exis-
tence of a q-periodic solution of (1.3), including its form and prime period. Section 3 reveals
a geometric background of this result, namely a relationship between the derived periodicity
conditions and analytical description of some roulette curves. Two particular cases of (1.3)



4 J. Čermák, L. Fedorková and L. Nechvátal

are investigated in Section 4. Here, we provide a generalization of Theorem 1.1 to (1.3) with
A = −I and a general m, and derive fully explicit conditions for detecting its periodic so-
lution. An application of the presented results in control theory is stated as well. The final
section, involving survey remarks and possible perspectives of the research, concludes the
paper.

2 Basic analytical conditions for the existence of a periodic solution
of (1.3)

First, we consider the characteristic polynomial P that is associated with the general linear
system (1.1). A simple but efficient method for analyzing the distribution of characteristic
roots with respect to the unit circle is the D-partition method (in the discrete case, it is also
referred to as the boundary locus technique). This method is standardly employed in stability
analysis of (1.1) but can also be applied to reveal periodic behavior.

Indeed, assume that P has a unimodular root λ = exp(iϕ), −π < ϕ ≤ π. A direct
substitution into P(λ) = 0 yields

det
(

exp(ikϕ)I +
k

∑
s=1

exp(i(k − s)ϕ)As

)
= 0. (2.1)

In particular, if λ = λj,q is given by (1.2), i.e., if we put ϕ = 2π j/q, then (2.1) becomes

det
(

exp
(

i
2π jk

q

)
I +

k

∑
s=1

exp
(

i
2π j(k − s)

q

)
As

)
= 0,

hence,

det
(

I +
k

∑
s=1

exp
(
−i

2π js
q

)
As

)
= 0. (2.2)

Thus, (1.1) admits a q-periodic solution if and only if there exists an integer j (specified in
(1.2)) such that (2.2) holds. Notice that the same conclusion was formulated in Theorem 3.1 of
[10] by the use of tools of circulant matrices (contrary to Theorem 3.1 of [10], now we do not
need to assume pairwise commutativity of the system matrices).

Of course, (2.2) is still rather a theoretical condition. The following assertion converts
(2.2) into an efficient form if we consider (1.3) instead of (1.1), and assume that A, B are
simultaneously triangularizable. In what follows, Arg denotes the principal argument of
a complex number (i.e., −π < Arg(z) ≤ π for z ∈ C), and we introduce a function (·)2π :
R → (−π, π] as the 2π-periodic extension of the identity function defined on (−π, π] (i.e.,
(·)2π provides modulo 2π operation).

Lemma 2.1. Let A, B ∈ Rd×d be simultaneously triangularizable matrices, k, m ∈ Z+, k > m, be
coprime and let q ∈ Z+. Then (1.3) has a nontrivial q-periodic solution if and only if there exists
a couple of simultaneously ordered eigenvalues (α, β) of A, B satisfying, for some integer j such that
⌊−q/2⌋+ 1 ≤ j ≤ ⌊q/2⌋, any of the following conditions:

(i) α = 0, |β| = 1, Arg(β) =

(
π +

2π jk
q

)
2π

;

(ii) β = 0, |α| = 1, Arg(α) =
(

π +
2π jm

q

)
2π

;
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(iii) αβ ̸= 0,
∣∣|α| − |β|

∣∣ ≤ 1 ≤ |α|+ |β|, and

cos
(

Arg(α)− 2π jm
q

)
=

|β|2 − |α|2 − 1
2|α| ,

cos
(

Arg(β)− 2π jk
q

)
=

|α|2 − |β|2 − 1
2|β| ,

(2.3)

where (Arg(α)− 2π jm/q)2π, (Arg(β)− 2π jk/q)2π have opposite signs if both are nonzero.

Proof. Because of the reduction of P into P∗∗, we need to describe the situation when the
complex trinomial Q (with appropriate eigenvalues α and β of A and B, respectively) has
a unimodular root (1.2). First note that Q has a unimodular root λ = exp(iϕ), −π < ϕ ≤ π,
just when

exp (ikϕ) + α exp (i(k − m)ϕ) + β = 0 (2.4)

(see also (2.1)). Since λ should be a q-th root of unity, we put again ϕ = 2π j/q, and (2.4)
becomes

exp
(

i
2π jk

q

)
+ α exp

(
i
2π j(k − m)

q

)
+ β = 0. (2.5)

This immediately implies the lemma’s conditions (i) and (ii).
Now assume αβ ̸= 0. Then (2.5) can be rewritten as

1 + |α| exp
(

i
(

Arg(α)− 2π jm
q

))
= −|β| exp

(
i
(

Arg(β)− 2π jk
q

))
which is (by comparing the real and imaginary parts) equivalent to the system

1 + |α| cos
(

Arg(α)− 2π jm
q

)
= −|β| cos

(
Arg(β)− 2π jk

q

)
,

|α| sin
(

Arg(α)− 2π jm
q

)
= −|β| sin

(
Arg(β)− 2π jk

q

)
.

(2.6)

Summing the squares of both the lines of (2.6) yields

1 + 2|α| cos
(

Arg(α)− 2π jm
q

)
+ |α|2 = |β|2,

which implies (2.3)1.
Now, substituting (2.3)1 to the left-hand side of (2.6)1, we obtain

1 + |α| |β|
2 − |α|2 − 1

2|α| = −|β| cos
(

Arg(β)− 2π jk
q

)
,

which, after a straightforward rearrangement, becomes (2.3)2. Moreover, the couple (α, β) has
to also satisfy the stated sign correspondence of the cosine arguments because (2.6)2 implies
that (Arg(α)− 2π jm/q)2π is in (0, π) (that is positive) just when (Arg(β)− 2π jk/q)2π is in
(−π, 0) (that is negative).
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Remark 2.2. If we fix α ̸= 0, then (2.3) allows to express β explicitly (in terms of its modulus
and argument). Indeed, taking into account the sign relation between (Arg(α)− 2π jm/q)2π

and (Arg(β)− 2π jk/q)2π, we get

|β| =

√
1 + |α|2 + 2|α| cos

(
Arg(α)− 2π jm

q

)
,

Arg(β) =

(
κ arccos

(
|α|2 − |β|2 − 1

2|β|

)
+

2π jk
q

)
2π

,

(2.7)

where κ = −1 if (Arg(α) − 2π jm/q)2π is in (0, π], and κ = 1 if (Arg(α) − 2π jm/q)2π is in
(−π, 0]. It means that, depending on the integer j, we have (for a given α) at most q possible
positions of β in the complex plane such that a q-th root of unity belongs among the roots
of Q.

Analogous explicit expressions can be obtained for α when β ̸= 0 is fixed. More precisely,
(2.3)2, (2.3)1 imply

|α| =

√
1 + |β|2 + 2|β| cos

(
Arg(β)− 2π jk

q

)
,

Arg(α) =
(

κ arccos
(
|β|2 − |α|2 − 1

2|α|

)
+

2π jm
q

)
2π

,

(2.8)

where κ = −1 if (Arg(β) − 2π jk/q)2π belongs to (0, π], and κ = 1 if (Arg(β) − 2π jk/q)2π

belongs to (−π, 0]. We add that a nice geometric interpretation of the conditions (2.7) and
(2.8) will be discussed in the next section.

To complete the above basic periodic investigations of (1.3), we reveal the structure of the
discussed q-periodic solution. As a first step, we state the following root property of P∗∗.

Proposition 2.3. If λj,q = exp(i2π j/q) (see (1.2)) is a root of P∗∗, then the complex conjugate number
λj,q = exp(−i2π j/q) is also a root of P∗∗. Moreover, if v is a characteristic vector corresponding to
λj,q, i.e., v solves the system

(
(λj,q)

k I + (λj,q)
k−m A + B

)
v = 0, then its complex conjugate v is

a characteristic vector corresponding to λj,q, i.e., v satisfies
(
(λj,q)

k I + (λj,q)
k−m A + B

)
v = 0.

Proof. Let λj,q be a root of P∗∗. Since P∗∗ and P∗ are identically equal, and P∗ is a real
polynomial, we immediately get that λj,q is a root of P∗∗ as well.

The complex conjugation of the corresponding characteristic vectors can be shown analo-
gously as in the case of standard eigenvectors. Indeed, let v be a characteristic vector corre-
sponding to λj,q, i.e., v satisfies(

(λj,q)
k I + (λj,q)

k−m A + B
)
v = 0.

Then, taking the conjugates of both sides, we have(
(λj,q)k I + (λj,q)k−m A + B

)
v = 0 =⇒

(
(λj,q)

k I + (λj,q)
k−m A + B

)
v = 0.

Therefore, v is a characteristic vector corresponding to λj,q.

Now, using Proposition 2.3, we can easily describe the family of all q-periodic solutions
of (1.3) generated by λj,q, v, and their conjugates. Obviously, (1.3) has two such (linearly
independent) solutions in the form

x∗1(n) = v exp
(

i
2π jn

q

)
and x∗2(n) = v exp

(
−i

2π jn
q

)
.
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To avoid solutions with complex values, we put

x1(n) =
1
2
(
x∗1(n) + x∗2(n)

)
and x2(n) =

1
i2
(
x∗1(n)− x∗2(n)

)
to get a new pair of (linearly independent) real solutions

x1(n) = v1 cos
(

2π jn
q

)
− v2 sin

(
2π jn

q

)
, x2(n) = v2 cos

(
2π jn

q

)
+ v1 sin

(
2π jn

q

)
, (2.9)

where v1 = ℜ(v), v2 = ℑ(v). Then, any q-periodic solution x of (1.3) generated by λj,q, v, and
their conjugates is given by a linear combination x(n) = C1x1(n) + C2x2(n), C1, C2 ∈ R. It is
clear that the corresponding initial vectors

x0(−k + 1), x0(−k + 2), . . . , x0(0)

have to match the form (2.9), i.e., we put

x0
1(n) = v1 cos

(
2π jn

q

)
− v2 sin

(
2π jn

q

)
, x0

2(n) = v2 cos
(

2π jn
q

)
+ v1 sin

(
2π jn

q

)
(2.10)

for n = −k + 1,−k + 2, . . . , 0.
Moreover, we can easily decide whether the prescribed period q is also a prime period

of the solutions (2.9). Obviously, x1, x2 are p-periodic (p ∈ Z+) whenever pj/q is an integer.
Therefore, such a number p is a prime period if p = q/gcd(j, q). It means that if j and q are
coprime, then q is a prime period.

3 Some geometric observations

In this section, we clarify a geometric background of the conditions (2.7) and (2.8). Doing this,
we come back to the condition (2.4) characterizing the set of all complex α, β such that Q has
a unimodular root λ = exp(iϕ), −π < ϕ ≤ π. As observed in [20], the geometric nature of
such characterizations can be described in terms of some roulette curves. In the sequel, we
elaborate on these issues in detail.

If we fix α ̸= 0 (as in Remark 2.2), the set of all β satisfying (2.4) is alternatively given by

β = |α| exp
(
i(π + Arg(α) + (k − m)ϕ)

)
− exp(ikϕ). (3.1)

Set s = π + Arg(α) + (k − m)ϕ to obtain

β = |α| exp(is)− exp
(

i
k

k − m

(
s − (π + Arg(α))

))
. (3.2)

Further, the substitution t = s − (π + Arg(α))k/m converts (3.2) to the form

β = |α| exp
(

it + i
k
m

(
π + Arg(α)

))
− exp

(
i

k
k − m

t + i
k
m

(
π + Arg(α)

))
= exp

(
i

k
m

(
π + Arg(α)

))(
|α| exp(it)− exp

(
i

k
k − m

t
))

.
(3.3)

Finally, we introduce the parameters R = |α|m/k, r = |α|(k − m)/k, δ = 1 to rewrite (3.3) as

β = exp
(

i
k
m

(
π + Arg(α)

))(
(R + r) exp (it)− δ exp

(
i
R + r

r
t
))

. (3.4)
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The second term in (3.4) represents the complex canonical parametrization of an epitrochoid,
which is a roulette traced by a point attached to a circle of radius r, having distance δ from
its center and rolling around the outside of a fixed circle of radius R. In addition, the appear-
ance of the first term in (3.4) implies that the epitrochoid is rotated by the angle of rotation
ω =

( k
m (π + Arg(α))

)
2π

. Thus, (3.1) is converted to the parametric equation of a rotated
epitrochoid

β = exp(iω)

(
(R + r) exp (it)− δ exp

(
i
R + r

r
t
))

, (3.5)

where t = s − (π + Arg(α))k/m = (k − m)ϕ −
(
π + Arg(α)

)
(k − m)/m. Note also that an

epitrochoid is closed whenever r/R is a rational number. In our case, r/R = (k − m)/m ∈ Q,
and it is not difficult to check that the parametrization (3.5) has the prime period 2π(k − m).

To summarize, the complex number β satisfies (3.1) just when β is located on the (rotated)
epitrochoid (3.5) with

R = |α|m
k

, r = |α| k − m
k

, δ = 1, ω =

(
k
m
(
π + Arg(α)

))
2π

. (3.6)

In particular, Q has a unimodular root (1.2) just when the position of β on this epitrochoid is
specified via

t = (k − m)
2π j

q
−
(
π + Arg(α)

) k − m
m

for some j =
⌊
− q

2

⌋
+ 1,

⌊
− q

2

⌋
+ 2, . . . ,

⌊ q
2

⌋
. (3.7)

Similarly, if we fix β ̸= 0, then the set of all α satisfying (2.4) is given by

α = |β| exp
(
i(π + Arg(β) + (m − k)ϕ)

)
− exp (imϕ) , −π < ϕ ≤ π.

Putting s = π + Arg(β) + (m − k)ϕ, we obtain

α = |β| exp(is)− exp
(

i
m

m − k

(
s −

(
π + Arg(β)

)))
. (3.8)

Now, let

t =
m

m − k

(
s −

(
π + Arg(β)

))
− m

k
Arg(β).

Then, (3.8) becomes

α = |β| exp
(

i
m − k

k
t + i

(
π +

m
k

Arg(β)
))

− exp
(

it + i
m
k

Arg(β)

)
= exp

(
i
(

π +
m
k

Arg(β)
))(

exp(it) + |β| exp
(

i
m − k

m
t
))

.

If we introduce R = k/(k − m), r = m/(k − m), δ = |β|, and ω = (π + Arg(β)m/k)2π, then

α = exp(iω)

(
(R − r) exp(it) + δ exp

(
i
r − R

r
t
))

, (3.9)

where t =
(
s − (π + Arg(β))

)
m/(m − k)− Arg(β)m/k = mϕ − Arg(β)m/k. Notice that the

second term in (3.9) represents another roulette curve – hypotrochoid, which is a roulette
traced by a point attached to a circle of radius r, having distance δ from its center, and rolling
around the inside of a fixed circle of radius R (R > r). The first term in (3.9) again provides
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a rotation of the curve by the angle ω. Since the ratio r/R = m/k is a rational number, the
parametrization (3.9) is periodic and its prime period is 2πm (i.e., (3.9) represents a closed
curve).

Overall, analogously as above, one can conclude that Q has a unimodular root (1.2) just
when α is located on the hypotrochoid (3.9) with

R =
k

k − m
, r =

m
k − m

, δ = |β|, ω =
(

π +
m
k

Arg(β)
)

2π
, (3.10)

where
t = m

2π j
q

− m
k

Arg(β) for some j =
⌊
− q

2

⌋
+ 1,

⌊
− q

2

⌋
+ 2, . . . ,

⌊ q
2

⌋
. (3.11)

Thus, Lemma 2.1 and Remark 2.2, supported by the previous considerations, yield the
following analytical and geometric characterization of the existence of a periodic solution of
(1.3).

Theorem 3.1. Let A, B ∈ Rd×d be simultaneously triangularizable matrices, k, m ∈ Z+, k > m, be
coprime and let q ∈ Z+. Then the following statements are equivalent.

(i) The system (1.3) has a nontrivial q-periodic solution.
(ii) Either (iia) or (iib) holds, where:

(iia) There exists a zero eigenvalue α of A such that the corresponding eigenvalue β of B (in
the sense of simultaneous ordering) is lying on a unit circle centered at the origin and the
admissible values of arguments of β are specified via the conditions (i) of Lemma 2.1.

(iib) There exists a nonzero eigenvalue α of A such that the corresponding eigenvalue β of B (in
the sense of simultaneous ordering) is lying on the rotated epitrochoid (3.5) with R, r, δ, ω

given by (3.6); moreover, all the admissible values of the parameter t are specified via (3.7).
Alternatively, all such positions of β on this epitrochoid are described by (2.7).

(iii) Either (iiia) or (iiib) holds, where:

(iiia) There exists a zero eigenvalue β of B such that the corresponding eigenvalue α of A (in
the sense of simultaneous ordering) is lying on a unit circle centered at the origin and the
admissible values of arguments of α are specified via the conditions (ii) of Lemma 2.1.

(iiib) There exists a nonzero eigenvalue β of B such that the corresponding eigenvalue α of
A (in the sense of simultaneous ordering) is lying on the rotated hypotrochoid (3.9) with
R, r, δ, ω given by (3.10); moreover, all the admissible values of the parameter t are specified
via (3.11). Alternatively, all such positions of α on this hypotrochoid are described by (2.8).

Example 3.2. Consider the (planar) system (1.3) with k = 5, m = 3 and A, B given by

A =

√
3

3

(
8 9
−6 −7

)
, B =

√
3

3

(
−1 −3
2 4

)
.

It is easy to check that A and B are commuting (therefore simultaneously triangularizable),
and the pairs of their simultaneously ordered eigenvalues are

(α1, β1) =

(
−
√

3
3

,
2
√

3
3

)
, (α2, β2) =

(
2
√

3
3

,

√
3

3

)
.

Considering the first pair (α1, β1), we can check that the corresponding trinomial

λ5 −
√

3
3

λ2 +
2
√

3
3

,
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appearing in the decomposition (1.7), has a unique unimodular root. More precisely, β1 =

2
√

3/3 is located on the epitrochoid (3.5) with R =
√

3/5, r = 2
√

3/15, δ = 1 and ω =

−2π/3. Moreover, its position corresponds to t = 4π j/q − 4π/3, where j = 1 and q = 12, see
Figure 3.1 (left). Equivalently, α1 = −

√
3/3 is located on the hypotrochoid (3.9) with R = 5/2,

r = 3/2, δ = 2
√

3/3, ω = π, and its position corresponds to t = 6π j/q, where j = 1 and
q = 12, see Figure 3.1 (right). Thus, the eigenvalues β1, α1 obey (2.7), (2.8) with j = 1 and
q = 12.

Considering the second pair (α2, β2), one can see that the corresponding trinomial

λ5 +
2
√

3
3

λ2 +

√
3

3
,

appearing in (1.7), has no unimodular root, hence β2, α2 do not meet (2.7), (2.8) for any integers
j and q.

Im(β)

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Re(β)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Im(α)

Re(α)

Figure 3.1: An epitrochoid (left) and a hypotrochoid (right) corresponding to
the data of Example 3.2. The blue points in the left figure depict all the 12 possi-
ble positions of numbers β which can be an eigenvalue of B in a simultaneously
ordered pair with α1 of A (in fact, we have 9 positions only as one triple co-
incides with another one). Emphasized is the eigenvalue β1 of B. The orange
points in the right figure depict all the 12 positions of numbers α which can be
an eigenvalue of A in a simultaneously ordered pair with β1 of B (in fact, we
have 11 positions only as one couple coincides). Emphasized is the eigenvalue
α1 of A.

By Theorem 3.1, the system has just a 12-periodic solution (and 12 is a prime period as
j = 1 and q = 12 are coprime). Moreover, since it holds

(λ1,12)
k I + (λ1,12)

k−m A + B =

( √
3

2 + i 9
2

√
3

2 + i 9
2

−
√

3
3 − i3 −

√
3

3 − i3

)
,

where λ1,12 = exp(i2π/12), the characteristic vector corresponding to λ1,12 can be taken sim-
ply as v = (1,−1)T (i.e., v1 = ℜ(v) = (1,−1)T, v2 = ℑ(v) = (0, 0)T). Thus, using the
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considerations performed at the end of Section 2, all (12-periodic) solutions of the studied
system are of the form

x(n) = C1

(
1
−1

)
cos
(

πn
6

)
+ C2

(
1
−1

)
sin
(

πn
6

)
, C1, C2 ∈ R

(five initial vectors x0(−4), x0(−3), x0(−2), x0(−1), x0(0) have to be prescribed accordingly).
No other periodic solution can be detected in this system. Figure 3.2 depicts both components
of the periodic solution x with C1 = 1 and C2 = 2.

0 5 10 15 20 25 30 35
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

n

x1

0 5 10 15 20 25 30 35
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x2

n

Figure 3.2: The first (left) and the second (right) component of the 12-periodic
solution with respect to the data of Example 3.2.

4 Periodicity problem in two particular cases of (1.3)

In this section, we elaborate on the conclusions of Theorem 3.1 under specific choices of A
(while B remains free). First, we consider the difference system

x(n)− x(n − m) + Bx(n − k) = 0, (4.1)

and generalize the conditions (1.4)–(1.6) of Theorem 1.1 for arbitrary coprime integers k, m,
k > m. Moreover, we give a new insight into a geometric structure of these conditions.

Theorem 4.1. Let B ∈ Rd×d, and let k, m ∈ Z+, k > m, be coprime. Then the following statements
are equivalent.

(i) The system (4.1) has a nontrivial periodic solution.

(ii) There exists an eigenvalue β of B lying on the epitrochoid (3.5), where R = m/k, r = (k − m)/k,
δ = 1, ω = (2πk/m)2π, and β corresponds to t = 2π(k − m)(jm − q)/(qm) for some q ∈ Z+

and some j = ⌊−q/2⌋+ 1, ⌊−q/2⌋+ 2, . . . , ⌊q/2⌋.

(iii) B has a zero eigenvalue or has an eigenvalue β = b exp(iϕ) such that, for some ξ ∈ Z+
0 , η ∈ Z+,

ξ ≤ η, we have

|ϕ| = πξ

2η
and b = 2(−1)ℓ sin

(
π(η − ξ)m
2η(2k − m)

+
πℓm

2k − m

)
,
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where ℓ is any integer satisfying

−k +
m
2
− 1

2

(
1 − ξ

η

)
≤ ℓ ≤ k − m

2
− 1

2

(
1 − ξ

η

)
,

ℓ ̸=
(

2k
m

− 1
)

s − 1
2

(
1 − ξ

η

)
for all integers s such that −

⌊
m
2

⌋
≤ s ≤

⌊
m
2

⌋
. (4.2)

Proof. If we put A = −I, then all the eigenvalues αi of A are equal to −1 (i.e., |αi| = 1,
Arg(αi) = π), and the equivalence between (i) and (ii) follows immediately from Theorem 3.1,
the branches (i) and (iib). We show the equivalence between (i) and (iii).

If β = 0 is an eigenvalue of B, then the corresponding trinomial (1.8) reduces to Q(λ) =

λk − λk−m. Such a trinomial has a root λ = 1 which is a q-th root of unity (for any q ∈ Z+),
and the existence of a nontrivial periodic (constant) solution is straightforward.

Now, let β = b exp(iϕ), b ̸= 0, |ϕ| ≤ π/2, be an eigenvalue of B. The existence of a periodic
solution is guaranteed by Theorem 3.1 (branches (i) and (iib) – its alternative supplement).
Hence, let us find all the possible values of b and ϕ such that the conditions (2.7) are satisfied
for some q ∈ Z+ and some j ∈ Z such that ⌊−q/2⌋+ 1 ≤ j ≤ ⌊q/2⌋. Since αi = −1, then,
taking into account the identity 2 cos2(t) = 1 + cos(2t), (2.7) simplifies to

|β| = |b| = 2
∣∣∣∣cos

(
π

2
− π jm

q

)∣∣∣∣,
Arg(β) =

(
κ arccos

(
−|b|

2

)
+

2π jk
q

)
2π

.
(4.3)

If j is such that cos(π/2 − π jm/q) > 0, then we can write (4.3)1 as

|b|
2

= cos
(

π

2
− π jm

q

)
(4.4)

and (4.3)2, with help of the identity arccos(−t) = π − arccos(t), becomes

Arg(β) = −π + arccos
(
|b|
2

)
+

2π jk
q

+ 2πpj = −π

2
+ (2k − m)

π j
q

+ 2πpj (4.5)

for a suitable pj ∈ Z. On the other hand, if j is such that cos(π/2 − π jm/q) < 0, then

−|b|
2

= cos
(

π

2
− π jm

q

)
(4.6)

and (4.3)2 becomes

Arg(β) =
π

2
+ (2k − m)

π j
q

+ 2πpj (4.7)

for a suitable pj ∈ Z. Clearly, in both the cases, Arg(β) has to be a rational multiple of π,
therefore, let us write |ϕ| = πξ

2η where ξ, η are integers such that η > 0 and 0 ≤ ξ ≤ η. We
distinguish four cases according to the sign of b and ϕ.

Let b > 0, ϕ > 0 and cos(π/2 − π jm/q) > 0. Then Arg(β) = ϕ = πξ
2η and (4.5), (4.4) yield

j
q
=

ξ + η − 4ηpj

2η(2k − m)
, (4.8)

b = 2 cos
(

π

2
− π jm

q

)
= −2 sin

(
−π jm

q

)
. (4.9)
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Substituting (4.8) into (4.9), we have

b = 2(−1)ℓj sin
(

π(η − ξ)m
2η(2k − m)

+
πℓjm

2k − m

)
, (4.10)

where ℓj = 2pj − 1 is an odd integer.
Similarly, if cos(π/2 − π jm/q) < 0, with help of (4.7) and (4.6) we get (4.10), where

ℓj = 2pj is now an even integer.
A discussion of the remaining cases (b > 0 and ϕ ≤ 0, b < 0 and ϕ > 0, b < 0 and ϕ ≤ 0)

is quite analogous, leading to the identical description (4.10) of the values b independently of
the cos(π/2 − π jm/q) sign (both odd and even integers ℓj are always involved).

It remains to determine the range of the integers ℓj, which follows easily from the fact that
−⌊q/2⌋ < j ≤ ⌊q/2⌋. Since q can be chosen as q = 2η(2k − m), see (4.8), we actually have
⌊q/2⌋ = q/2. Thus, ∣∣∣∣π jm

q

∣∣∣∣ ≤ πm
2

,

which implies

−k +
m
2
− 1

2

(
1 − ξ

η

)
≤ ℓj ≤ k − m

2
− 1

2

(
1 − ξ

η

)
.

Finally, the condition (4.2) excludes those integers ℓ for which the argument of sine function
in (4.10) is an integer multiple of π. Therefore, the case of b = 0 does not occur.

Now, we put m = 1 and formulate a consequence of Theorem 4.1 for the case studied
in [10].

Corollary 4.2. Let B ∈ Rd×d, and let k ∈ Z+. Then the following statements are equivalent.

(i) The system (4.1) with m = 1 has a nontrivial periodic solution.

(ii) There exists an eigenvalue β of B lying on the epitrochoid (3.5), where R = 1/k, r = (k − 1)/k,
δ = 1, ω = 0, and t = 2π(k − 1)(j − q)/q for some q ∈ Z+ and some j = ⌊−q/2⌋ +
1, ⌊−q/2⌋+ 2, . . . , ⌊q/2⌋.

(iii) B has a zero eigenvalue or has an eigenvalue β = b exp(iϕ) such that, for some ξ ∈ Z+
0 , η ∈ Z+,

ξ ≤ η, and ℓ ∈ Z+
0 , we have

|ϕ| = πξ

2η
, b = 2(−1)ℓ sin

(
π(η − ξ)

2η(2k − 1)
+

πℓ

2k − 1

)
, −1

2

(
1 − ξ

η

)
< ℓ ≤ 2k − 2. (4.11)

Proof. The stated equivalencies follow directly from Theorem 4.1 considering m = 1. Indeed,
while the first two statements are straightforward, the conditions (iii) of Theorem 4.1 simplify
to

|ϕ| = πξ

2η
and b = 2(−1)ℓ sin

(
π(η − ξ)

2η(2k − 1)
+

πℓ

2k − 1

)
,

where ℓ is an integer such that

−k +
ξ

2η
≤ ℓ < −1

2

(
1 − ξ

η

)
or − 1

2

(
1 − ξ

η

)
< ℓ ≤ k − 1 +

ξ

2η
. (4.12)
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Now, to adjust the bounds from (4.12)1, we can write

b = 2(−1)ℓ sin
(

π(η − ξ)

2η(2k − 1)
+

πℓ

2k − 1

)
= 2(−1)ℓ+1 sin

(
π +

π(η − ξ)

2η(2k − 1)
+

πℓ

2k − 1

)
= 2(−1)ℓ

′
sin
(

π(η − ξ)

2η(2k − 1)
+

πℓ′

2k − 1

)
, where ℓ′ = ℓ+ 2k − 1.

Thus,

−k +
ξ

2η
≤ ℓ < −1

2

(
1 − ξ

η

)
if and only if k − 1 +

ξ

2η
≤ ℓ′ < 2k − 1

2

(
3 − ξ

η

)
.

Since 2 ≤ 3 − ξ
η ≤ 3, the last inequality can be written as ℓ′ ≤ 2k − 2.

Remark 4.3. To compare the conclusions of Corollary 4.2 and Theorem 1.1 (Theorem 4.1 of
[10]), one can observe that the equivalency between (i) and (iii) of Corollary 4.2 actually agrees
with the statement of Theorem 1.1. More precisely, when ξ = 0, we obtain |ϕ| = 0 (i.e., β = b
is a real eigenvalue) and (4.11) reduces to

b = 2(−1)ℓ sin
(

π(2ℓ+ 1)
2(2k − 1)

)
, ℓ = 0, 1, . . . , 2k − 2.

It is not difficult to check that the values of b corresponding to ℓ = k, k + 1, . . . , 2k − 2 are
already contained in the set of all b corresponding to ℓ = 0, 1, . . . , k − 1, hence we get (1.4).
Further, if ξ = η, then the conditions (4.11) directly imply (1.5), and if 0 < ξ < η, then the
conditions (4.11) agree with (1.6).

In addition to the assertion of Theorem 1.1, the part (ii) of Corollary 4.2 reveals a geometric
nature of the condition (iii).

As the second illustration of Theorem 3.1, we consider a specific control problem for the
linear autonomous difference system

x(n) + Ax(n − 1) = 0. (4.13)

We again restrict to the planar case and assume that A has the Jordan form

A =

(
a1 a2

−a2 a1

)
, a1, a2 ∈ R (4.14)

with the spectral norm ∥A∥ =
√

a2
1 + a2

2 ̸= 1. Thus, the trivial equilibrium of this system is
a focus (attractive if ∥A∥ < 1 and repelling if ∥A∥ > 1). Obviously, such a system does not
admit any (nontrivial) periodic solution.

Now we extend this system by a control term u(n) = Bx(n), acting with an integer delay
k, to obtain a delay feedback controlled system

x(n) + Ax(n − 1) + Bx(n − k) = 0.

We put B = ρΦ with a real scalar ρ > 0 and a rotation matrix

Φ =

(
cos ϑ sin ϑ

− sin ϑ cos ϑ

)
, −π < ϑ ≤ π.
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Our task is to describe the set of all control parameters ρ, ϑ and k such that the controlled
system

x(n) +
(

a1 a2

−a2 a1

)
x(n − 1) + ρ

(
cos ϑ sin ϑ

− sin ϑ cos ϑ

)
x(n − k) = 0 (4.15)

admits a (nontrivial) q-periodic solution, a positive integer q being prescribed.
From the mathematical side, we analyze the existence of a q-periodic solution of (1.3)

with the above specified A, B and m = 1. Obviously, the matrices A, B are commuting, and
the simultaneous ordering of their eigenvalues is (a1 + ia2, ρ exp(iϑ)), (a1 − ia2, ρ exp(−iϑ)).
Thus, if (ρ, ϑ) is a control couple, then (ρ,−ϑ) is also a control couple, and we can restrict to
one sign variant only, say (a1 + ia2, ρ exp(iϑ)).

Now, Theorem 3.1 (see also Remark 2.2) yields that the controlled system (4.15) has a q-
periodic solution if and only if the control parameters ρ, ϑ, k meet, for an integer j such that
⌊−q/2⌋+ 1 ≤ j ≤ ⌊q/2⌋, the conditions

ρ2 = 1 + ∥A∥2 + 2∥A∥ cos
(

Arg(a1 + ia2)−
2π j

q

)
,

ϑ =

(
κ arccos

(
∥A∥2 − ρ2 − 1

2ρ

)
+

2π jk
q

)
2π

(4.16)

where

κ = −1 if 0 <

(
Arg(a1 + ia2)−

2π j
q

)
2π

≤ π

and

κ = 1 if − π <

(
Arg(a1 + ia2)−

2π j
q

)
2π

≤ 0.

In particular, if k = q, then we directly have

ϑ = κ arccos
(
∥A∥2 − ρ2 − 1

2ρ

)
.

Alternatively, Theorem 3.1 implies that such a control couple is lying on the epitrochoid
(3.5) with R = ∥A∥/k, r = ∥A∥(k − 1)/k, δ = 1, ω =

(
kπ + k Arg(a1 + ia2)

)
2π

and t =

(k − 1)(2π j/q − π − Arg(a1 + ia2)) for some j = ⌊−q/2⌋+ 1, ⌊−q/2⌋+ 2, . . . , ⌊q/2⌋.

Example 4.4. Consider the system (4.13) with A given by (4.14) and put a1 = −0.4, a2 = −1.
The zero equilibrium of such a system is an unstable focus, therefore lim supn→∞ ∥x(n)∥ = ∞
for any nontrivial solution x of (4.13), see Figure 4.1 (left). We wish to find control parameters
ρ, ϑ, k generating a solution x of (4.15) with the period q = 22.

If we put k = q = 22 and j = 3, then (4.16) yields the control parameters ρ ≈ 0.353005 and
ϑ ≈ 1.520652. Under this choice of ρ, ϑ, k and j, the 22-nd root of unity λ3,22 = exp(i6π/22) is
also a root of the characteristic polynomial associated with the controlled system (4.15), hence,
this system admits a 22-periodic solution (q = 22 is even a prime period since gcd(3, 22) = 1).
In view of the notes at the end of Section 2, any such periodic solution is a linear combination

x(n) = C1x1(n) + C2x2(n), C1, C2 ∈ R,

where x1, x2 are given by (2.9) with q = 22, j = 3, v1 = (1, 0)T, v2 = (0, 1)T, and the initial
vectors are prescribed according to (2.10). Figure 4.1 (right) depicts a particular trajectory for
C1 = −1, C2 = 1 (such a choice of C1, C2 implies x1(0) = −1, x2(0) = 1).
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Figure 4.1: The left figure depicts a trajectory of the (uncontrolled) system (4.13)
in the (x1, x2)-plane for the data of Example 4.4 and the initial vector (−1, 1)T.
The right figure then depicts a periodic trajectory (oriented clockwise) of the
controlled system (4.15) (note that the prime period is 22/ gcd(3, 22) = 22).

5 Final remarks

In this paper, we focused on detecting a periodic behavior in the linear difference system (1.3)
with simultaneously triangularizable matrices A, B. Based on the analysis of the characteristic
polynomial, we formulated efficient conditions for the existence of a periodic solution of (1.3).
These conditions are given in terms of eigenvalues of A, B, and supported by its geometric
characterization, calculating the revealed periodic solutions and their prime period.

Extending the periodicity problem from this paper to the general case of (1.3) (i.e., without
the assumption on simultaneous triangularizability of A, B), or even to the system (1.1), is
probably very complicated. Nice periodicity results were obtained for a scalar version of
(1.3) in [11]. Similarly as in [10], the authors utilized the theory of circulant matrices in their
investigations (note that those results seem to be achievable also by the D-partition technique
applied in this paper). However, in a vector case, the formulation of such periodicity results
in terms of eigenvalues of the system matrices is a considerably more challenging task.

The difficulty of the problem is underlined by the fact that similar problems for (1.3)
and (1.1) remain open also in the related stability area. In this connection, we refer to the
interesting paper [13] suggesting a method for detecting periodic solutions in some linear
difference equations without knowledge of their characteristic roots. Of course, efficiency of
the method for more general cases is questionable.

Taking into account recent developments on locating the trinomial roots (see, e.g., [1, 4, 5,
20]), we believe that the approach based on a suitable decomposition of the characteristic poly-
nomial and the following analysis of the corresponding sparse polynomials has a promising
potential in periodicity (as well as stability) theory of autonomous difference equations.
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