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We study the Frobenius problem: Given relatively prime posi-
tive integers a1, . . . , ad, find the largest value of t (the Frobenius
number ) such that

∑d
k=1 mkak = t has no solution in nonneg-

ative integers m1, . . . , md. Based on empirical data, we conjec-
ture that except for some special cases, the Frobenius number
can be bounded from above by

√
a1a2a3

5/4 − a1 − a2 − a3.

1. INTRODUCTION

Given positive integers a1, . . . , ad with gcd(a1, . . . , ad) =
1, we call an integer t representable if there exist nonneg-
ative integers m1, . . . ,md such that

t =
d∑

j=1

mjaj .

In this paper, we discuss the linear Diophantine problem
of Frobenius: Namely, find the largest integer which is
not representable. We call this largest integer the Frobe-
nius number g(a1, . . . , ad); its study was initiated in the
19th century. For d = 2, it is well known (most probably
at least since Sylvester [Sylvester 84]) that

g(a1, a2) = a1a2 − a1 − a2 (1–1)

For d > 2, all attempts for explicit formulas have proved
elusive. Two excellent survey papers on the Frobenius
problem are [Alfonsin 00] and [Selmer 77].

Our goal is to establish bounds for g(a1, . . . , ad). The
literature on such bounds is vast—see, for example, [Beck
et al. 02, Brauer and Shockley 62, Davison 94, Erdős
and Graham 72, Selmer 77, Vitek 75]. We focus on
the first nontrivial case d = 3; any bound for this
case yields a general bound, as one can easily see that
g(a1, . . . , ad) ≤ g(a1, a2, a3). All upper bounds in the
literature are proportional to the product of two of the
ak. On the other hand, Davison proved the lower bound
g(a1, a2, a3) ≥

√
3a1a2a3 − a1 − a2 − a3 in [Davison 94].

Experimental data (see Figure 3) shows that this bound
is sharp in the sense that it is very often very close to
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g(a1, a2, a3). This motivates the question whether one
can establish an upper bound proportional to

√
a1a2a3

p

where p < 4/3 (p = 4/3 would be comparable to the
known bounds.). In this paper, we illustrate empirically,
on the basis of more than ten thousand randomly chosen
points, that g(a1, a2, a3) ≤ √

a1a2a3
5/4 − a1 − a2 − a3.

2. SOME GEOMETRIC-COMBINATORIAL
INGREDIENTS

Another motivation for the search for an upper bound
proportional to

√
a1a2a3

p comes from the following for-
mula of [Beck et al. 02], which is the basis for our study:
Let a, b, c be pairwise relatively prime positive integers,
and define

Nt(a, b, c) :=#
{
(m1,m2,m3) ∈ Z

3 :

mk ≥ 0, am1 + bm2 + cm3 = t} .

Then

Nt(a, b, c) =
t2

2abc
+

t

2

(
1
ab

+
1
ac

+
1
bc

)

+
1
12

(
3
a

+
3
b

+
3
c

+
a

bc
+

b

ac
+

c

ab

)

+ σ−t(b, c; a) + σ−t(a, c; b) + σ−t(a, b; c), (2–1)

where

σt(a, b; c) :=
1
c

∑
λc=1 �=λ

λt

(λa − 1) (λb − 1)

is a Fourier-Dedekind sum. One interpretation of
Nt(a, b, c) is the number of partitions of t with parts in
the set {a, b, c}. Geometrically, Nt(a, b, c) enumerates in-
teger points on the triangle{

(x1, x2, x3) ∈ R
3 : xk ≥ 0, ax1 + bx2 + cx3 = 1

}
,

dilated by t. The Frobenius problem hence asks for the
largest integer dilate of this triangle that contains no
integer point; in other words, the largest t for which
Nt(a, b, c) = 0. It is also worth mentioning that the con-
dition that a, b, and c are pairwise relatively prime is
no restriction, due to Johnson’s formula [Johnson 60]: if
m = gcd(a, b), then

g(a, b, c) = m g

(
a

m
,

b

m
, c

)
+ (m − 1)c . (2–2)

In [Beck et al. 02], formulas analogous to (2–1) for d > 3
are given. In our case (d = 3), a straightforward calcula-
tion shows

σt(a, b; c) = − 1
4c

c−1∑
k=1

e
πik

c (−2t+a+b)

sin πka
c sin πkb

c

.

In fact, σt(a, b; c) is a Dedekind-Rademacher sum
[Rademacher 64], as shown in [Beck et al. 02]. Hence
we can rewrite (2–1) as

Nt(a, b, c) =
t2

2abc
+

t

2

(
1
ab

+
1
ac

+
1
bc

)

+
1
12

(
3
a

+
3
b

+
3
c

+
a

bc
+

b

ac
+

c

ab

)

− 1
4a

a−1∑
k=1

e
πik

a (2t+b+c)

sin πkb
a sin πkc

a

− 1
4b

b−1∑
k=1

e
πik

b (2t+a+c)

sin πka
b sin πkc

b

− 1
4c

c−1∑
k=1

e
πik

c (2t+a+b)

sin πka
c sin πkb

c

. (2–3)

If we write the “periodic part” of Nt(a, b, c) as

Pt(a, b, c) :=
1
4a

a−1∑
k=1

e
πik

a (2t+b+c)

sin πkb
a sin πkc

a

+
1
4b

b−1∑
k=1

e
πik

b (2t+a+c)

sin πka
b sin πkc

b

+
1
4c

c−1∑
k=1

e
πik

c (2t+a+b)

sin πka
c sin πkb

c

, (2–4)

(2–3) becomes

Nt(a, b, c) =
t2

2abc
+

t

2

(
1
ab

+
1
ac

+
1
bc

)

+
1
12

(
3
a

+
3
b

+
3
c

+
a

bc
+

b

ac
+

c

ab

)

− Pt(a, b, c).

If we can bound Pt(a, b, c) from above by, say, B, then the
roots of Nt(a, b, c)—and hence g(a, b, c)—can be bounded
from above:

g(a, b, c) ≤ abc
(− 1

2

(
1
ab + 1

ac + 1
bc

)

+
√

1
4A1 − 2

abc

(
1
12A2 − B

))

= − 1
2 (a + b + c)

+
√

1
4 (abc)2A1 − 1

6abcA2 + 2B abc

=
√

2B abc + 1
12 (a2 + b2 + c2) − 1

2 (a + b + c),

where
A1 =

(
1
ab + 1

ac + 1
bc

)2

and
A2 =

(
3
a + 3

b + 3
c + a

bc + b
ac + c

ab

)
.

From this computation, the question of the existence of
an upper bound for g(a, b, c) proportional to

√
abc

p
comes
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up naturally. Unfortunately, it is not clear how to bound
the periodic part Pt(a, b, c) effectively. An almost triv-
ial bound for Pt(a, b, c) yielded in [Beck et al. 02] the
inequality

g(a, b, c) ≤ 1
2

(√
abc (a + b + c) − a − b − c

)
,

which is of comparable size to the other upper bounds
for g(a, b, c) in the literature. However, we believe one
can obtain bounds of smaller magnitude.

3. SPECIAL CASES

On the path to such “better” bounds, we first have to
exclude some cases which definitely yield Frobenius num-
bers of size a2

k. One of these cases is triples (a, b, c), such
that c is representable by a and b: by (1–1), we obtain
in this case g(a, b, c) = ab − a − b.

A second case of triples (a, b, c) that we need to exclude
are those for which a|(b+c). Brauer and Shockley [Brauer
and Shockley 62] proved that, in this case,

g(a, b, c) = max
(

b

⌊
ac

b + c

⌋
, c

⌊
ab

b + c

⌋)
− a.

Here �x� denotes the greatest integer not exceeding x.
An even less trivial example of special cases was given

by Lewin [Lewin 75], who studied the Frobenius number
of almost arithmetic sequences: If m,n > 0, gcd(a, n) =
1, and d ≤ a, then

g (a,ma + n,ma + 2n, . . . , ma + (d − 1) n) =
(

m

⌊
a − 2
d − 1

⌋
+ m − 1

)
a + (a − 1) n.

For arithmetic sequences (m = 1), this formula goes back
to Roberts [Roberts 56]; for consecutive numbers (m =
n = 1), it is due to Brauer [Brauer 42]. For the special
case d = 3, we obtain

g(a,ma + n,ma + 2n) =
(
m

⌊a

2

⌋
− 1

)
a + (a − 1) n.

As a function in a, b := ma+n, c := ma+2n, this Frobe-
nius number grows proportionally to ab, which means an
upper bound proportional to

√
abc

p
with p < 4/3 can-

not be achieved. Hence in our computations and conjec-
tures about upper bounds for g(a, b, c), we will exclude
the cases of one of the numbers being representable by
the other two, one number dividing the sum of the other
two, and almost arithmetic sequences. Finally, as noted
above, thanks to (2–2) we may assume without loss of
generality that a, b, and c are pairwise coprime. The
triples (a, b, c) that are not excluded will be called ad-
missible.

4. COMPUTATIONS

In the present section, we discuss the computation of the
Frobenius number. For convenience we computed the
number f(a, b, c) = g(a, b, c) + a + b + c. It is not hard
to see that f(a, b, c) is the largest integer that cannot
be represented by a linear combination of a, b, and c

with positive integer coefficients. The respective counting
function,

N t(a, b, c) := #
{
(m1,m2,m3) ∈ Z

3 :

mk > 0, am1 + bm2 + cm3 = t} ,

can also be found in [Beck et al. 02] and is closely related
to Nt(a, b, c):

N t(a, b, c) =
t2

2abc
− t

2

(
1
ab

+
1
ac

+
1
bc

)

+
1
12

(
3
a

+
3
b

+
3
c

+
a

bc
+

b

ac
+

c

ab

)

− 1
4a

a−1∑
k=1

e
πik

a (−2t+b+c)

sin πkb
a sin πkc

a

− 1
4b

b−1∑
k=1

e
πik

b (−2t+a+c)

sin πka
b sin πkc

b

− 1
4c

c−1∑
k=1

e
πik

c (−2t+a+b)

sin πka
c sin πkb

c

.

The following illustrates our algorithm.

STEP 0: Initiate the intervals I1, I2, I3 for

the selection of the arguments a,b,c;

STEP 1: Draw at random integers a,b,c from

I1, I2, I3, respectively;

STEP 2: Test a,b,c for coprimality and for

almost arithmetic sequences;

STEP 3: IF (a,b,c are not pairwise coprime) or

IF (a,b,c are almost arithmetic)

{discard a,b,c and GOTO STEP 1}

ELSE {SET delta <- min(a,b,c);

GOTO STEP 4};

STEP 4: Compute z=sqrt(a*b*c),

SET mb <- INT(sqrt(3)*z)+delta;

SET t <- mb;

STEP 5: Compute NB(t,a,b,c);

STEP 6: IF (NB(t,a,b,c)>0)
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{SET t <- t-1, and GOTO STEP 5}

ELSE {GOTO STEP 7};

STEP 7: SET f <- t;

STEP 8: IF(mb-f < delta) {SET

mb <- mb+delta

t <- mb

GOTO STEP 5}

ELSE {GOTO STEP 9};

STEP 9: PRINT f(a,b,c) <- f;

STOP.

For example, for a = 7, b = 13, c = 30 the pro-
gram yields the Frobenius number f(7, 13, 30) = 95, or
g(7, 13, 30) = 45. This program was tested against argu-
ments which yield known results, and found to be correct.

Our program is to choose at random arguments a, b, c

in a certain range (in our case [1, 750]), and test the
triplets for admissibility. For admissible triplets a, b, c,
we compute the Frobenius number f(a, b, c) based on
the straightforward observation that, once we have a =
min(a, b, c) consecutive integers which are representable,
we know that every integer beyond that interval is rep-
resentable as well. We start searching for roots of
N t(a, b, c) at the lower bound

√
3abc. If a root is found at

an integer f , we repeat this search until we find an inter-
val of a integers t with N t(a, b, c) > 0, that is, an interval
of a representable integers. At this stopping point, the
integer f is the sought-after Frobenius number f(a, b, c).

We have created a PARI-GP program1, following the
above algorithm. The program proved to be quite effi-
cient, since most of the values of f(a, b, c) were found to
be close to the lower bound

√
3abc, as shown in the anal-

ysis below. The Dedekind-Rademacher sums appearing
in (2–3) can be computed very efficiently because they
satisfy a reciprocity law ([Rademacher 64], for computa-
tional complexity see also [Knuth 77]), which allows us to
calculate their values similar in spirit to the Euclidean al-
gorithm. This implies that for a given t, N t(a, b, c) can be
computed with our rather simple algorithm in O(log(c))
time, assuming that c = max(a, b, c). Hence if f(a, b, c)
is close to the lower bound

√
3abc—which, again, hap-

pens in the vast majority of cases—we obtain f(a, b, c)
in O(a log(c)) time. On the other hand, we can of course
not assume that f(a, b, c) is close to

√
3abc; still we get, at

worst, a computation time of O(ab log(c)). What makes

1Our program can be downloaded at www.math.binghamton
.edu/matthias/frobcomp.html.

this analysis even more appealing is that it applies to the
general case of the Frobenius problem. As mentioned
above, there is an analog for (2–1) and (2–3) for d > 3
[Beck et al. 02], which again is a lattice-point count in a
polytope and as such is known (for fixed d) to be com-
putable in O (p (log a1, . . . , log ad)) time for some poly-
nomial p [Barvinok 94]. With an analogous algorithm
for the general case, we would hence be able to compute
f(a1, . . . , ad) in O (a1a2 p (log a1, . . . , log ad)) time, where
a1 < a2 < · · · < ad. As in the three-variable case—
in fact, even more so—most Frobenius numbers will be
situated very close to the lower bound

√
3a1a2a3, which

means that in the vast majority of cases, we can expect
a computation time of O (a1 p (log a1, . . . , log ad)).

The computational complexity of the Frobenius prob-
lem is very interesting and still gives rise to ongoing stud-
ies. Davison [Davison 94] provided an algorithm for the
three-variable case (a < b < c) which runs in O(log b)
time. The general case is still open. While Kannan [Kan-
nan 92] proved that there is a polynomial-time algorithm
(polynomial in log a1, . . . , log ad) to find g(a1, . . . , ad) for
fixed d, no such algorithm is known for d > 3. The
fastest general algorithm of which we are aware is due
to Nijenhuis [Nijenhuis 79] and runs in O(d a log a) time,
where a = min(a1, . . . , ad). Hence, while our primitive
algorithm is not competitive for the three-variable case
of the Frobenius problem, it might be worthwhile to de-
velop it further in the general case.

We initially implemented our program as an MS-DOS
QUICK BASIC program and experienced some interest-
ing problems due to floating-point errors: Computing
generalized Dedekind sums can get challenging for large
arguments. These problems were only discovered when
we reimplemented the algorithm in PARI-GP, which has
an extended precision arithmetic and also keeps track of
roundoff errors effectively. It is worth mentioning that
both Knuth’s algorithm [Knuth 77] for the computation
of Rademacher-Dedekind sums and Davison’s algorithm
[Davison 94] for computing g(a, b, c) are integer algo-
rithms and therefore are very stable.

With our program, we generated at random 10000 ad-
missible triplets. Our main question is the relation of the
Frobenius number f = f(a, b, c) to z :=

√
abc. The fol-

lowing is a statistical description of the ratios R := f/z.

4.1 Descriptive Statistics

Q1 and Q3 are the first and third quartiles, respectively.
We see in Table 2 that 50% of the cases have a ratio
smaller than 2.01, and 75% have ratio smaller than 2.30.
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a b c f(a, b, c) z =
√

abc
√

3 z z5/4 R = f/z

487 733 738 121755 16231.0 28112.9 183202 7.50140
229 483 662 64901 8557.0 14821.1 82300 7.58457
223 307 698 52657 6912.7 11973.2 63032 7.61740
244 357 619 56067 7343.0 12718.5 67974 7.63542
509 541 557 95788 12384.7 21450.9 130649 7.73439
262 349 699 61861 7994.7 13847.2 75597 7.73776
475 611 679 109183 14037.9 24314.4 152802 7.77773
248 305 439 45274 5762.5 9980.9 50207 7.85671
265 488 509 65434 8113.2 14052.5 77000 8.06514
274 401 695 70596 8738.6 15135.6 84489 8.07868
368 415 599 77374 9564.5 16566.2 94586 8.08972
281 341 502 57790 6935.6 12012.8 63293 8.33241
315 488 559 77734 9269.8 16055.8 90958 8.38571
305 319 652 67142 7964.7 13795.3 75242 8.42995
393 452 619 89830 10486.0 18162.3 106112 8.56664
313 532 579 84150 9819.0 17007.0 97743 8.57012
301 479 725 87903 10224.0 17708.5 102808 8.59773
655 671 679 150043 17274.9 29921.1 198048 8.68558
296 731 749 110834 12730.5 22049.9 135225 8.70618
359 520 619 94318 10749.6 18618.9 109457 8.77406
337 346 701 79559 9040.9 15659.3 88159 8.79989
320 469 491 77556 8584.2 14868.4 82628 9.03469
335 668 669 112894 12235.6 21192.6 128685 9.22672
379 389 748 97998 10501.4 18188.9 106306 9.33194

TABLE 1.

In the following figures, we present a box-plot and a his-
togram of the variable R.

Variable N Mean Median StDev Min Max Q1 Q3

R 10000 2.283 2.012 0.737 1.736 9.332 1.940 2.299

TABLE 2.

In the box-plot, the bottom line of the box corresponds
to the first quartile Q1. The top line of the box corre-
sponds to the third quartile Q3. There are 980 points
above the value of R = 3. Only 24 points, which are
listed in Table 1, have a value of R greater than 7.5.

In Figure 3, we present all the points (z, f). Notice
that all the points are above the straight line

√
3z, which

illustrates Davison’s lower bound. The upper bound is,
however, convex. It is included in the figure as the graph
z5/4.

5. CONJECTURES AND CLOSING REMARKS

Randomly chosen admissible arguments tend to yield a
Frobenius number f smaller than the expected number
(mean) which is estimated to be 2.28z. The distribution
of R = f/z is very skewed (positive asymmetry) as seen
in Figure 1. Since 10000 random points yielded f <

z5/4, or g(a, b, c) <
√

abc
5/4 − a − b − c, the probability

9.5

8.5

7.5

6.5

5.5

4.5

3.5

2.5

1.5

R

FIGURE 1. Box-plot.

that a future randomly chosen admissible triplet with
z =

√
abc < 20000 will yield f ≥ z5/4 is smaller than

1/10000.
In general, our data suggests that one can obtain an

upper bound of smaller magnitude than what the above
cited results state. Again, the upper bounds in the liter-
ature are comparable to an upper bound proportional to√

abc
4/3

. We believe the following is true.

Conjecture 5.1. There exists an upper bound for (a, b, c)
proportional to

√
abc

p
where p < 4

3 , valid for all admis-
sible triplets (a, b, c).
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FIGURE 2. Histogram

FIGURE 3. f = f(a, b, c) as a function of z =
√

abc.

In fact, our data suggests, more precisely, that for all
admissible triplets (a, b, c),

g(a, b, c) ≤
√

abc
5/4 − a − b − c.

It is very improbable that a randomly chosen admissi-
ble triple (a, b, c), such that

√
abc < 20000, will yield

g(a, b, c) >
√

abc
5/4 − a − b − c. However, we re-

mark that there might be specific structures of triples
(a, b, c), close to almost arithmetic, for which g(a, b, c) >√

abc
5/4 − a − b − c. This is generally not the case.
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