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In [Zagier and Kramarz 87], the authors computed the critical
value of the L-series of the family of elliptic curves x3 + y3 = m

and they pointed out some numerical phenomena concerning
the frequency of curves with a positive rank and the frequency
of occurrences of the Tate-Shafarevich groups X in the rank 0
case (assuming the Birch and Swinnerton-Dyer conjecture). In
this paper, we give a similar study for the family of elliptic curves
associated to simplest cubic fields. These curves have a nonzero
rank and we discuss the density of curves of rank 3 that occurs.
We also remark on a possible positive density of nontrivial Tate-
Shafarevitch groups in the rank 1 case. Finally, we give examples
of curves of rank 3 and 5 for which the group X is nontrivial.

1. INTRODUCTION AND MOTIVATIONS

Let E be an elliptic curve defined over Q. From the work
of [Wiles 95], [Taylor and Wiles 95], and [Breuil et al.
2001], E is known to be modular. This implies that its
L-function L(E, s) can be analytically continued to the
whole complex plane. Furthermore, if N is the conductor
of E, then the following functional equation holds:

Λ(E, 2 − s) = εΛ(E, s), (1–1)

where ε = ±1 is the sign of the functional equation and

Λ(E, s) =

(√
N

2π

)s

Γ(s)L(E, s).

In this paper, we are interested in computing the analytic
order of the Tate-Shafarevich group X of certain elliptic
curves E defined over Q using the Birch and Swinnerton-
Dyer (BSD) conjecture:

Conjecture 1.1. (Birch and Swinnerton-Dyer.) Let r

denote the rank of the Mordell-Weil group E(Q). We
have

lim
s→1

L(E, s)
(s − 1)r

=
c Ω R

|E(Q)tors|2
|X|, (1–2)
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where c denotes the product of the Tamagawa numbers,
Ω the real period, and R the regulator of E.

In [Zagier and Kramarz 87], Kramarz and Zagier car-
ried out some numerical computations related to the fam-
ily of elliptic curves given by equations x3 + y3 = m (the
so-called Sylvester cubics). They computed the critical
value of the L-functions of the curves having an even
functional equation (i.e., ε = 1) for m ≤ 70000 and
they pointed out some numerical phenomena concern-
ing the frequency of curves with a positive rank and the
frequencies of occurrences of |X| in the rank 0 case (with
Formula (1–2)). More precisely, concerning the rank,
their numerical data suggest a possible positive density
of curves with positive rank. In [Watkins 00], Watkins
extended the computations to m = 107, the results being
that the density of positive rank is finally decreasing and
probably tends to zero like x/(x5/6 log(x)C) (with some
constant C ≈ 3/5). The behaviour x5/6 was already men-
tioned in [Zagier and Kramarz 87], and stronger models
using random matrix theory as in [Conrey et al. 00]
should give x5/6 log(x)C for some constant C.

Watkins computations confirm the remark on Kra-
marz and Zagier that the frequency of occurrences of
|X| = 1, |X| = 4, etc. among rank 0 curves is de-
creasing. Heuristics in [Delaunay 01] predict that these
frequencies should be 0 (but note that these heuristics
predict a general behaviour for all elliptic curves and that
we are only concerned here with very specific families).
Furthermore, the numerical results of Watkins about the
question of how often a given prime p divides |X| seem
to be not too much discordant with the predictions in
[Delaunay 01] (at least for p �= 3).

Here, we make a similar experimental study, but in
the case of a family of elliptic curves with positive rank.
It is quite natural and interesting to wonder if the same
phenomena will occur or not and, in fact, as far as we
know, there is no such study in the literature. In the
case of positive rank, heuristics in [Delaunay 01] predict
that there is a positive density of curves with a nontrivial
Tate-Shafarevich group but, in practice, they are quite
sparsely observed. For example, the tables of Cremona
([Cremona 03b]) found only 196 such curves among all
elliptic curves of conductor less than 20000; furthermore
all of these 196 curves have rank 1 and most of them
have X = 4. Indeed, there are infinitely many rational
points on such curves, so that it is more difficult to find
p-adic points not corresponding to rational points. In
fact, nontrivial Tate-Shafarevich groups appear for large
conductors.

The problem of computing |X| using Formula (1–2)
when the rank is positive is much more complicated be-
cause on the one hand we have to determine the regulator
R (in the rank-0 case, the regulator is simply R = 1) and
on the other hand we have to deal with quite large con-
ductors to be able to detect nontrivial X.

Here, we are concerned with the family of elliptic
curves associated to the simplest cubic fields (see below)
which were introduced by Shanks in [Shanks 74] and were
studied by Washington ([Washington 1987]) and more re-
cently in [Duquesne 01]. This family has properties in-
teresting for our purpose. Each of these curves has an
odd rank and an explicit generator so that the regulator
is easily computable when the rank is 1. The conductor
grows fast so that we can hope to find nontrivial Tate-
Shafarevich groups. We compute, using the GP-Pari soft-
ware ([PARI 02]), values of L′(E, 1) for many of these
curves and deduce from them and from Formula (1–2)
analytic orders of Tate-Shafarevich groups for the rank-1
case. The methods we used are well known since we have
to evaluate a rapidly converging series (see Formula (2–
4)), and are explained in [Cohen 93] and [Cremona 97].
Furthermore, several GP-programs are available, for ex-
ample, a program by Cremona and Womack ([Cremona
and Womack]), which computes the derivatives of L-
functions of elliptic curves or by Dokchitser ([Dokchitser
03]); this program deals with general L-function having
a classical functional equation.

According to our numerical data, we first observe an
experimental positive-like density of curves with high
ranks. With regard to the above Zagier-Kramarz exten-
sion by Watkins, we must be careful; indeed, the fact that
the growth of the regulator can be well estimated allows
us to use the same argument-principle as in the case of
the Sylvester cubics and it suggests that the density of
curves with ranks ≥ 3 may tend to 0. We also discuss the
density of occurrences of |X| when the rank is 1 (with
the same reticence as above). Finally, we find examples
of nontrivial Tate-Shafarevich groups for some curves of
rank 3 and 5 by computing L(3)(E, 1) and L(5)(E, 1).

2. ELLIPTIC CURVES ASSOCIATED TO
SIMPLEST CUBIC FIELDS

In the sequel, m will always denote a positive integer such
that the number ∆ = m2 + 3m + 9 is square-free. Let E

be the elliptic curve:

E : Y 2 = X3 + mX2 − (m + 3)X + 1. (2–1)
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The field defined by the polynomial of the right-hand side
of (2–1) is said to be a simplest cubic field. These fields
were introduced by Shanks in [Shanks 74].

In [Washington 1987], Washington studied these fields
and deduced some properties of the related elliptic curves
(2–1), including the following result:

Theorem 2.1. (Washington.) The rank of the elliptic
curve E is odd, assuming that the Tate-Shafarevitch
group is finite.

In [Duquesne 01], the second author studies the struc-
ture of the Mordell-Weil group of these curves, and in
particular proves:

Theorem 2.2. The Mordell-Weil group E(Q) is torsion-
free and the point (0, 1) can always be taken as an element
of a system of generators for E(Q). In particular, if the
rank of E is one, the point (0, 1) generates E(Q).

Let us now write down the classical invariants attached
to these curves. The discriminant of E is 16∆2; its j-
invariant is 256∆. Note that 16∆2 is the discriminant
of (2–1) and is the minimal discriminant of E whereas
Equation (2–1) does not give the minimal Weierstrass
model. In fact, the minimal model is given by a slightly
more complicated equation,

Y 2 = X3 + εX2 − (
3(k2 + k + 1) + (2k + 1)ε

)
X

+ (2k + 1)(k2 + k + 1) + k(k + 1)ε,

where m = 3k+ε with ε = ±1 (if ε = 0, m does not define
a simplest cubic field). Moreover, Tate’s algorithm also
allows us to compute the conductor and the Tamagawa
numbers:

m ≡ 0 (mod 2) m ≡ 1 (mod 4) m ≡ 3 (mod 4)

N 16∆2 8∆2 4∆2

c 1 2 3

The table above shows that N is about m4 and grows
sufficiently quickly as mentioned in the introduction.

In our case, the BSD conjecture predicts that

L′(E, 1) = c Ω ĥ ((0, 1)) S, (2–2)

where ĥ is the canonical height on E and is computed
using GP-Pari, Ω is the real period of E (which is easily
computable using the AGM method), and

S =
{

0 if rank(E) > 1,
|X| if rank(E) = 1.

From the work of [Duquesne 01], one can see that
ĥ ((0, 1)) behaves like log(m) and that Ω � m−1/2 log(m).
Since, under GRH, L′(E, 1) = O(mε), using Formula (2–
2), we obtain

S = O(m1/2+ε). (2–3)

Furthermore, the value of L′(E, 1) is computed by:

L′(E, 1) = 2
∑
n≥1

an

n

∫ ∞

2πn√
N

e−t dt

t
, (2–4)

where L(E, s) =
∑

n≥1 ann−s.
Thus, we compute S using (2–2). From the well-known

work of Gross and Zagier ([Gross and Zagier 86]) S is
known to be a rational number. All the values that we
find in our numerical calculations are near to perfect
squares of integers as required by the BSD conjecture.
This gives a check of our numerical computations.

3. NUMERICAL RESULTS

We computed S for all integers m less than 14000 defining
simplest cubic fields. For this, we need about O

(√
N

)
co-

efficients in the right-hand side of Formula (2–4) to obtain
a reasonable accuracy for L′(E, 1). Since the conductor
grows as m4, we were led to consider sums with about
m2 terms (and so sums with about 2× 108 terms for the
largest values of m we considered). For this, the strategy
that we used to get a sufficiently good approximation for
L′(E, 1) is the following (the same sort of strategy is used
in [Zagier and Kramarz 87]):

• We compute and store the values of the coefficients
an for n less than some bound B of the order of

√
N

(B = 1.67 × 107 for large values of m).

• We compute the partial sum in (2–4) using these
first coefficients.

• Beyond B, we compute on the fly the coefficients an

(if n = n1n2 with n1, n2 ≤ B, we can deduce an

from an1 and an2) and add their contributions to
the sum. At each step, we add 106 new terms in the
partial sum.

• We repeat the last step until two successive sums Σ1

and Σ2 satisfy:

|Σ1 − Σ2| < 0.02 and |Σ2 − s2| < 0.02 for some
s ∈ Z.



314 Experimental Mathematics, Vol. 12 (2003), No. 3

Note that for each prime p dividing the conductor, we
have p2|N . Thus, from the Atkin-Lehner theory ([Atkin
and Lehner 70]), (n,N) �= 1 ⇒ an = 0, and in particular,
an = 0 if n is even. This remark is helpful for computa-
tions.

For large values of the parameter (say m ≥ 8000),
the computation of L′(E, 1) requires a lot of time and
memory. We needed several months of CPU time on a
Pentium III at 1GHz to deal with the values of m less
than 14000.

In order to give the numerical data that we obtained,
we set

N(x) = �
{
m ≤ x | m2 + 3m + 9 is square-free

}
,

Ns(x) = �
{
m ≤ x | m2 + 3m + 9 is square-free and

Sm = s} .

The results are summarized in the following table:

x 2000 4000 6000 8000 10000 12000 14000

N(x) 1246 2492 3739 4986 6234 7477 8722

N0(x) 363 700 1031 1347 1681 2026 2328

N1(x) 728 1384 2025 2677 3267 3828 4402

N4(x) 101 235 389 522 703 868 1035

N9(x) 45 141 227 326 427 540 674

N16(x) 5 19 42 67 91 116 150

N25(x) 3 11 17 32 46 72 97

N36(x) 1 2 7 13 13 15 21

N49(x) 1 1 3 7 9

N64(x) 1 2 3

N81(x) 1 2 3 3

3.1 Density of High Rank Curves

The discussion we give here is founded on experimental
data; several interpretations are possible, so we must be
careful that the behaviour of the curves for m ≤ 14000
may not mirror the general one when m tends to ∞ (as
is the case for the Zagier-Kramarz computations). A
first approach concerning the frequency of occurrences
of curves with L′(E, 1) = 0 (and so of curves with rank
≥ 3) suggests that there is a positive density of such
curves. Indeed, as it can be seen in Figure 1, the ratio
N0(x)/N(x) is fairly nearly constant (the constant being
≈ 0.27).

Such an observation should provide, as asked in [Zagier
and Kramarz 87], an example of a family of curves with
an expected positive density of curves with high rank.
Note that in the case of the simplest cubic fields, and
contrary to the Fermat cubics, the curves are not isomor-
phic over any number field (their j-invariant is not con-
stant). We should compare this 27% of extra-rank curves

FIGURE 1. The points (N(x), N0(x)) (and joined).

we obtained with the large table of Stein and Watkins in
[Stein and Watkins 02] extending the Brumer-McGuiness
one ([Brumer and McGuinness 90]) and for which 92.5%
of their curves with odd functional equation have rank 1
(their database contains million of curves, and their con-
ductors do not exceed 1010). In fact, one of the current
opinions about the rank of elliptic curves is that asymp-
totically, the rank is the lowest one compatible with the
sign of the functional equation ([Brumer and McGuin-
ness 90]). So, it would be very surprising if a positive
density really occurs for our family.

Thanks to the estimate of Formula (2–3), we can adapt
the argument of Zagier and Kramarz: Assuming S is, in
fact, a random perfect square between 0 and

√
m for

each value of m, then the number of curves with m ≤
x that have rank greater than 1 should be about x3/4.
Moreover, a näıve extension of the conjecture [Conrey
et al. 00] to our case should provide the more precise
estimate x3/4 log(x)C for some constant C. However, it
does not seem obvious how to extend the work of [Conrey
et al. 00] to the derivatives of L-functions even if, as
in our case, the regulator can be well estimated. The
interpretation above is corroborated by taking the best
linear fit to a log-log graph of Figure 1. We find thus
that the number of curves with m < x that have rank
greater than 1 appear to grow like x0.967, which is close
enough to x3/4 log(x)0.91 when x ≤ 14000.

3.2 Frequency of Occurrences of S

We also compute the frequency of occurrences of each
analytic order of Tate-Shafarevich groups among curves
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FIGURE 2. Frequencies of occurrence of S.

of (analytic) rank 1. Figure 2 illustrates the results that
we obtained.

Although we cannot produce sufficient data, we seem
to have a positive density for each order. This is in ac-
cordance with the heuristics in [Delaunay 01]. However,
the densities could differ from the predicted ones since
we only consider a specific family of elliptic curves. For
instance, 68.8% (respectively, 18.9%, 10.9%) of rank 1
curves with m ≤ 14000 have trivial X (respectively, have
2 dividing S, have 3 dividing S) whereas [Delaunay 01]
would predict 54.9% (respectively, 31.1%, respectively,
12.3%).

Furthermore, the same heuristic argument as for S = 0
could also be used here and predicts that NS(x)/(N(x)−
N0(x)) should tend to zero like x−1/4 and so clashes with
the heuristics and seems to be discordant with our nu-
merical data.

Arithmetic effects on m could also modify the frequen-
cies we considered. In view of the invariants of E, it is
natural to fit m into three cases: m even, m ≡ 1 mod 4,
and m ≡ 3 mod 4 (in fact, other cases were considered
as ∆ prime for example, but gave nearly the same results
as in the general case). We sum up the results for all
curves with m ≤ 14000 in the following table. It follows
from the data that the densities are, as in the general
case, nearly constant for m ≤ 14000, but depend on the
class of m.

m �{S = 0} �{S = 1} �{S = 4} �{S = 9} �{S ≥ 16}
≡ 0 mod 2 964 2040 628 490 239

≡ 1 mod 4 649 1133 256 110 32

≡ 3 mod 4 715 1229 151 74 12

For m ≡ 0 mod 2 (respectively, m ≡ 1 mod 4, m ≡
3 mod 4), there are about 22.1% (respectively, 29.7%,
32.7%) of elliptic curves with S = 0. This difference
could be explained by the fact that Formula (2–2) and
the invariant c force S to be smaller when m is odd,
and so S is more often equal to 0 or 1 in this case. We
also remark that all parametrizations of [Duquesne 01],
in order to have elliptic curves with large rank, give odd
values of m.

4. NONTRIVIAL TATE-SHAFAREVICH GROUPS
OF CURVES WITH RANK 3 AND 5

Among the 27% of our curves of rank 3 or more, we
find some curves of analytic rank 3 with nontrivial Tate-
Shafarevich group. For this, we use Conjecture 1.1 and
compute L′′′(E, 1) by the method of Buhler, Gross, and
Zagier ([Buhler et al. 85]).

The first example of rank greater than 1 for which
the program mwrank of Cremona ([Cremona 03a]) is not
able to determine the rank completely is obtained with
m = 157. As mwrank uses a 2-descent, this suggests a
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nontrivial 2-part in the Tate-Shafarevich group. In order
to compute the regulator, we check that the points

P1 = [−12, 151], P2 = [0, 1], and P3 = [3, 31]

form a basis for E(Q) using Siksek’s method ([Siksek 95]).
Finally, we get |X| = 4, thus providing a nontrivial Tate-
Shafarevich group for an elliptic curve of rank 3 (assum-
ing BSD). Other such examples are given by m = 617,
830, 856, 943, 961.

We can also obtain similar results for rank 5. In this
case, the first value for which the mwrank program does
not seem to determine the rank completely is m = 3461.
Thus, this suggests a nontrivial 2-part. Indeed, we can
check that the points

[0, 1], [−4, 263], [−40, 2369], [−124, 7193],

and [−12
169

,
35725
2197

]
give a basis for E(Q) and that |X| = 4 (under BSD).
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