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In this paper, we propose a method to obtain the syzygies of the
Dirac complex defined on abstract vector variables. We pro-
pose a generalized theory of differential forms which acts as a
de Rham-like sequence for the Dirac complex and we show that
closure in this complex is equivalent to the syzygies for the Dirac
complex.

1. INTRODUCTION

Our interest in complexes of systems of hypercomplex op-
erators goes back to our first paper on the topic [Adams
et al. 99], when we began studying nonhomogeneous
Cauchy-Fueter systems on quaternions (see [Berenstein
et al. 96] for the first announcement of the results). The
lack of commutativity typical of the quaternionic situa-
tion implied that the compatibility conditions necessary
and sufficient for the solutions of such systems were un-
usual and somewhat unexpected. The simplest analogue
which was originally guiding our intuition was the study
of the Cauchy-Riemann system. In that case, the Dol-
beault sequence for the ∂̄ operator is an exact sequence of
spaces of differential forms, whose length is the dimension
of the base space, and which is well known at every step.
As a consequence, the resolution of the Cauchy-Riemann
system in n complex variables is also well known: It is
composed of linear maps, has length n, and, at each step,
it is explicitly given in terms of the operators ∂̄ in the var-
ious variables, and it leads naturally to the well-known
Koszul complex.

When one studies the quaternionic analogue, the first
difficulty is that no such thing as a Dolbeault sequence
exists (unless, of course, one wishes to resort to the
BGG sequence as indicated in [Somberg 01], where our
quaternionic theory is reinterpreted in light of such a se-
quence). Nevertheless, we were able to employ the the-
ory of Gröbner bases to compute the resolution for the
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Cauchy-Fueter system, and we discovered that the reso-
lution employs quadratic entries, has length 2n − 1, if n

is the number of independent Cauchy-Fueter operators,
and, most important, cannot be expressed in terms of the
original Cauchy-Fueter operators themselves.

The syzygies which cannot be expressed in terms of
the original operators eventually became known as “ex-
ceptional syzygies” and for a long time their meaning
escaped us. We were finally able to provide a full de-
scription of the relevant syzygies in a series of papers
that were inspired by some lengthy computations which
we did employing the CoCoA package1 (see, for exam-
ple, [Sabadini and Struppa 02], for a discussion of the
experiments we have done in this direction). The results
which were obtained can be found in [Adams and Lous-
taunau 01] and [Adams et al. 97]. In [Sabadini et al. 02],
we extended our study to the case of Dirac operators on
Clifford algebras. The analysis turned out to be very
useful as it allowed us to understand that the reason for
the presence of exceptional syzygies was related to a di-
mensionality issue, which could be avoided by raising the
dimension of the underlying vector space. In particular,
this showed that the case of quaternions was somehow
an exception. At the same time, the study of the resolu-
tions introduced even more unexpected phenomena, such
as syzygies of mixed degree. The lack of an appropriate
theory of differential forms forced our work to be more
algebraic in nature, and less apt to exploit the specific
shape of Clifford algebras. Once again, CoCoA proved
to be a fundamental tool in assisting us to experiment
with systems of increasingly large dimensions and com-
plexity.

In this paper, we propose a self-consistent theory for
systems of Dirac operators. This is achieved through the
construction of an appropriate abstract theory of gener-
alized differential forms for complexes of Dirac operators.
The theory is based on the assumption that all the pos-
sible relations among Dirac operators must satisfy the
axioms of the so-called radial algebra, as introduced in
[Sommen 97], and requires the introduction of new ab-
stract objects which we call “megaforms” and which can
be thought of as “forms of mixed degree 1 and 2,” and a
suitable complex {Fk, dk : Fk → Fk+1}. We do not yet
have the entire theory of such megaforms (that we have
completed only in the case of two operators) but, based
on a series of calculations (some of which are included in
this paper), we conjecture that such a complex is, in fact,

1CoCoA is a special computer system for doing computations
in commutative algebra. It is freely available by anonymous FTP
from http://cocoa.dima.unige.it.

sufficient to compute all the syzygies for the Dirac com-
plex. Our expectation is that such a complex has length
2n−1 where n is the number of Dirac operators involved,
and that, like the Dolbeault complex, the last step is the
dual of the first step itself. Working with megaforms is
quite complicated, especially because of the amount of
computations, but the advantage of this approach is that
the theory of megaforms provides a method to produce
all the syzygies of the Dirac complex in the radial case.
In fact, the reader must note that the computations with
CoCoA can only be done with specific values of the di-
mension of the Clifford algebra and for a given number
of operators. Moreover, CoCoA can only give the num-
ber and the degree of the syzygies, while the theory of
megaforms allows the explicit computation of the maps
in the complex and it is independent of the dimension.
Most of the results which we present or conjecture in this
paper can only be imagined through a series of complex
computations. We have executed these computations by
hand since we have to take into account additional re-
lationships among the variables. One of our students is
currently working toward the creation of a package that
will allow performance of such symbolic calculations.

2. STANDARD DIRAC COMPLEX

Let R
m be the real Euclidean space and define Rm as the

real Clifford algebra generated by the orthogonal basis
elements {e1, . . . , em} together with the defining relations
of the form

ejek + ekej = −2δjk.

Let x1, . . . , xm denote the standard commuting variables
and let f(x) be an Rm-valued function. One may consider
the action of the Dirac operator, or vector derivative,

∂x : f(x) → ∂xf(x) =
m∑

j=1

ej∂xj
f(x)

and the solutions of the homogeneous equation ∂xf(x) =
0, that are called monogenic functions; one may also con-
sider the inhomogeneous equation ∂xf(x) = g(x) whose
study is a standard topic in Clifford analysis. Without
claiming completeness, we refer the reader to [Brackx et
al. 82], [Delanghe et al. 92], and [Gilbert and Murray
90].

Less well developed is the theory of Dirac systems in
several vector variables (see [Berenstein et al. 96], [Con-
stales 89], [Laville 83], [Sommen 87]) which generalizes
the better known theory of several quaternion variables
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([Adams et al. 97], [Adams et al. 99], [Adams and Lous-
taunau 01], [Baston 92], [Colombo et al. 03], [Palamodov
99], [Pertici 88], [Sabadini and Struppa 97]). To this pur-
pose, consider several vector variables

x1, . . . , x�, xj =
m∑

k=1

xjkek,

and functions f(x1, . . . , x�) with values in Rm. One of the
natural problems deals with the solvability of the system




∂x1
f = g1

. . .
∂x�

f = g�

(2–1)

for given �g = (g1, . . . , g�), gj : (Rm)� → Rm. Namely,
one wants to find the necessary and sufficient conditions
on the gi for the system (2–1) to be solvable. This is in
reality just the first step of a much more general prob-
lem, i.e., the determination of a resolution for the module
associated with the system (2–1). The reader is referred
to [Struppa 98] or to our forthcoming book [Colombo et
al. 03] for the details on this theory.

The compatibility relations for the solvability of sys-
tem (2–1), the so-called first syzygies, give a homoge-
neous system of differential equations P1(D)�g = 0. One
then goes on to study the new inhomogeneous system
P1(D)�g = �h and determines the so-called second syzygies
which are the compatibility relations for the solvability
of this system and so on; this is the required resolution
for the Dirac complex. We originally thought that the
syzygies should always be expressible in terms of the vec-
tor derivatives ∂x1

, . . . , ∂x�
. However, the Cauchy-Fueter

system requires “exceptional syzygies” which cannot be
expressed in terms of ∂x1

, . . . , ∂x�
. In [Sabadini et al.

02], we proved that these syzygies arise because of the
invalidity of the Fischer-decomposition theorem in low
dimensions. In fact, this theorem is only valid in case the
dimension m of the space is such that m ≥ 2� − 1 and
it was established in [Sabadini et al. 02] that for dimen-
sions m ≥ 2�−1 the syzygies are all expressible within the
real algebra generated by ∂x1

, . . . , ∂x�
and in particular,

in that case, the first syzygies are all quadratic.
Before we proceed any further, we wish to give an idea

of the complexity of the problem by discussing in detail
the case of three operators acting on the algebra Rm,
with m ≥ 5. The complete computations are given in
[Sabadini et al. 02], but we want to provide the reader
with the flavor of the nature of the direct computations.

Let us consider the system


∂x1
f = g1

∂x2
f = g2

∂x3
f = g3,

(2–2)

where f : (Rm)3 → Rm, m ≥ 5. Let R =
C[x11, x12, . . . , x1m, . . . x31, x32, . . . , x3m] and denote by
M3 the module R2m

/〈P t〉, P being the 3 ·2m ×2m poly-
nomial matrix which represents the Fourier transform of
the differential operators which appear in (2–2) after we
rewrite the system in real coordinates. In the case of
m = 2, for example, P would look like



0 −x11 −x12 0
x11 0 0 x12

x12 0 0 −x11

0 −x12 x11 0
0 −x21 −x22 0

x21 0 0 x22

x22 0 0 −x21

0 −x22 x21 0
0 −x31 −x32 0

x31 0 0 x32

x32 0 0 −x31

0 −x32 x31 0




.

According to [Sabadini et al. 02], if m ≥ 5, M3 has the
resolution

0 −→ R2m

(−9) −→ R3·2m

(−8) −→ R8·2m

(−6)

−→ R6·2m

(−4) ⊕ R6·2m

(−5)

−→ R8·2m

(−3) −→ R3·2m

(−1) −→ R2m −→ M3 −→ 0.
(2–3)

Note that the exponents of R denote the number of real
syzygies which appear at every stage, while the number
in parentheses indicates the degree of such syzygies (or
better the differences of the numbers in parentheses rep-
resent the degrees). So, for example, the first syzygies are
quadratic (2 = 3 − 1), while the second syzygies are lin-
ear (six of them) and quadratic (six of them), etc. Note
that the number of real syzygies is always a multiple of
the real dimension 2m of Rm. When we write the syzy-
gies in term of Rm-variables, the effective number does
not contain 2m. For example, one sees that the system
P1(D)�g = 0 entails 8 compatibility conditions on the gi.
Six of them are given by the relations:

∂xi
∂xj

gj − ∂2
xj

gi = 0

for each of the ordered pairs of indices 1 ≤ i, j ≤ 3, while
the remaining two are given by the 3 relations

{∂xi
, ∂xj

}gk = ∂xk
∂xi

gj + ∂xk
∂xj

gi
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of which only two are independent. Those 8 syzygies lead
to the new nonhomogeneous system P1(D)�g = �h




∂x2
∂x1

g1 − ∂2
x1

g2 = h12

∂x3
∂x1

g1 − ∂2
x1

g3 = h13

∂x1
∂x2

g2 − ∂2
x2

g1 = h21

∂x3
∂x2

g2 − ∂2
x2

g3 = h23

∂x1
∂x3

g3 − ∂2
x3

g1 = h31

∂x2
∂x3

g3 − ∂2
x3

g2 = h32

{∂x2
, ∂x3

}g1 − ∂x1
∂x2

g3 − ∂x1
∂x3

g2 = a1

{∂x1
, ∂x3

}g2 − ∂x2
∂x1

g3 − ∂x2
∂x3

g1 = a2

{∂x1
, ∂x2

}g3 − ∂x3
∂x1

g2 − ∂x3
∂x2

g1 = a3,

(2–4)

with the constraint a1 + a2 + a3 = 0. Resolution (2–3)
shows that the compatibility conditions for P1(D)�g = �h

will contain 6 linear syzygies and 6 quadratic syzygies.
The 6 linear compatibility conditions of system (2–4),

that give the syzygies at the second step, are given by



∂x2
h12 + ∂x1

h21 = 0
∂x3

h13 + ∂x1
h31 = 0

∂x3
h23 + ∂x2

h32 = 0
∂x3

h12 + ∂x2
h13 = ∂x1

a1

∂x1
h23 + ∂x3

h21 = ∂x2
a2

∂x2
h31 + ∂x1

h32 = ∂x3
a3,

while the 6 quadratic compatibility conditions are given
by the cyclic permutations of (1, 2, 3) in

{∂x1
, ∂x2

}h23 + ∂2
x2

a3 = ∂x3
∂x2

h21,

of which only 3 are independent. Finally, we have the
permutations of the condition

∂2
x1

h23 − ∂2
x2

h13 = ∂x3
∂x1

h21,

which gives 3 more quadratic relations. The syzygies
found at the second step give the nonhomogeneous sys-
tem formed by the 3 equations

∂xi
hji + ∂xj

hij = Rk,

for (i, j, k) = (2, 1, 3), (2, 3, 1), or (3, 1, 2) together with
the 3 equations

∂xi
hjk + ∂xk

hji − ∂xj
ak = Sk

(i, j, k) = (1, 2, 3), (2, 3, 1), or (3, 1, 2), then the 6 equa-
tions given by the permutations of (i, j, k) = (1, 2, 3) in

{∂xi
, ∂xj

}hjk + ∂2
xj

ak − ∂xk
∂xj

hji = Tki

and, finally, by the 6 permutations of (i, j, k) = (1, 2, 3)
in

∂xi
∂xj

hkj + ∂2
xk

hji − ∂2
xj

hki = Ukj .

We have the following constraints on Tij and Uij :

T23 + T32 = ∂x1
S1, T31 + T13 = ∂x2

S2,

T12 + T21 = ∂x3
S3

U23 + U32 = ∂x1
R1, U31 + U13 = ∂x2

R2,

U12 + U21 = ∂x3
R3.

These constraints reduce the total number of equations
in the system to 12.

The 8 compatibility conditions of the previous system
are given by

1. the 3 conditions obtained by the cyclic permutations
of (1, 2, 3) in the formula

∂x2
U13 − ∂x1

U32 + ∂2
x2

R2 − ∂2
x3

R3 = 0

of which 2 are independent;

2. the 6 permutations of the relation

∂2
x1

S2 + ∂x2
T23 − ∂x3

∂x1
R3 − ∂x1

U12 = 0.

We now have the nonhomogeneous system consisting of

∂2
x1

S2 + ∂x2
T23 − ∂x3

∂x1
R3 − ∂x1

U12 = B12

together with its permutations, and the 3 relations ob-
tained by the cyclic permutations of (1, 2, 3) in

∂x1
U32 − ∂x3

U21 + ∂2
x2

R2 − ∂2
x1

R1 = C1,

with the constraint C1 + C2 + C3 = 0. We have the
following constraints: T12 + T21 = ∂x3

S3, U12 + U21 =
∂x3

R3 together with their cyclic permutations. For this
system, we have that the 3 compatibility conditions are
given by

{∂x1
, ∂x2

}C3 + ∂x2
∂x1

C2 = ∂x3
∂x2

B12 + ∂2
x2

B13

− ∂x3
∂x1

B21 − ∂2
x1

B23

and its cyclic permutations.
The closing of the complex requires just one more re-

lation. Considering the equations

E1 = {∂x2
, ∂x3

}C1 + ∂x3
∂x2

C3 − ∂x1
∂x3

B23 − ∂2
x3

B21

+ ∂x1
∂x2

B32 + ∂2
x2

B31

E2 = {∂x3
, ∂x1

}C2 + ∂x1
∂x3

C1 − ∂x2
∂x1

B31 − ∂2
x1

B32

+ ∂x2
∂x3

B13 + ∂2
x3

B12

E3 = {∂x1
, ∂x2

}C3 + ∂x2
∂x1

C2 − ∂x3
∂x2

B12 − ∂2
x2

B13

+ ∂x3
∂x1

B21 + ∂2
x1

B23
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and using C1 + C2 + C3 = 0, it follows that

∂x1
E1 + ∂x2

E2 + ∂x3
E3 = 0,

which closes the complex.
These computations suggest the consideration of the

algebra of abstract variables, called “radial algebra” (see
[Sommen 97]) generated by a set S of abstract vari-
ables x1, . . . , xl, . . . with defining relations [xi, {xj , xk}] =
xi(xjxk +xkxj)− (xjxk +xkxj)xi = 0. The idea of such
algebra leads to a mathematical foundation of the “Ge-
ometric Calculus” introduced in [Hestenes and Sobczyk
85], by which it was inspired, and one may define ab-
stract Dirac operators or vector derivatives ∂x1 , ..., ∂xl

,...
as endomorphisms on it. It was shown in [Sommen 01]
that, in the setting of abstract vector variables, the Fis-
cher decomposition is always valid and therefore one may
define the Dirac complex for the abstract vector deriva-
tives ∂x1 , ..., ∂xl

, ... and then determine the corresponding
syzygies.

In order to gain the appropriate perspective, let us
look back at the more classical case of differential forms
of type (0, k) of C∞ class on C

n = R
2n, i.e., differential

forms having local representation of the type
∑

fi1...ik
dz̄i1 ∧ . . . ∧ dz̄ik

,

where fi1...ik
are infinitely differentiable functions. The

space of forms of this type will be denoted by C(0,k). Let
us denote by ∂̄k the antiholomorphic exterior differenti-
ation of degree k, i.e.,

∂̄k(
∑

fi1...ik−1dz̄i1 ∧ . . . ∧ dz̄ik−1) =
∑

∂z̄k
fi1...ik−1dz̄k

∧ dz̄i1 ∧ . . . ∧ dz̄ik−1 ;

we have the following sequence of sheaves (the so-called
Dolbeault complex):

0 −→ O −→ C(0,0) ∂̄0−→ C(0,1) ∂̄1−→ . . .
∂̄n−1−→ C(0,n) −→ 0.

Now consider the system of n Cauchy-Riemann operators
P (D) = [∂z̄1 , . . . , ∂z̄n

] and consider its resolution built
using the Koszul complex (see [Krantz 83]),

0 −→ O −→ C∞ P (D)−→ (C∞)(
n
1) P1(D)−→ . . .

Pn−1(D)−→ (C∞)(
n
n) −→ 0.

The key point in the theory of holomorphic differential
forms is the fact that a k-form ω =

∑
αi1...ik

dz̄i1 ∧ . . . ∧
dz̄ik

is closed if and only if α = [αi1...ik
] satisfies the k-th

compatibility conditions Pk(D)α = 0, i.e., if and only if α

satisfies the k-th syzygies of the Cauchy-Riemann system.
To clarify this discussion, let us examine in detail the
case of two Cauchy-Riemann operators. The Dolbeault
complex in C

2 is

0 −→ O −→ C(0,0) ∂̄0−→ C(0,1) ∂̄1−→ C(0,2) −→ 0,

where ∂̄0f = ∂̄f = ∂z̄1dz̄1 + ∂z̄2fdz̄2 for f ∈ C(0,0), and
∂̄1ω = ∂̄1(α1dz̄1 + α2dz̄2) = (∂z̄1α2 − ∂z̄2α1)dz̄1 ∧ dz̄2 for
any ω ∈ C(0,1). The Koszul complex is

0 −→ O −→ C∞ [∂z̄1 ∂z̄2 ]−→ (C∞)2
[∂z̄2 −∂z̄1 ]t−→ C∞ −→ 0.

Note that ∂̄1ω = 0 if and only if α = [α1 α2] satisfies
∂z̄1α2−∂z̄2α1 = 0, i.e., it satisfies the system P1(D)α = 0.
The fundamental conclusion we draw is that the com-
plex of (0, k) differential forms and the resolution of
(∂z̄1 , . . . , ∂z̄n

) yield exactly the same operators. If one
were to try to mimic this construction in the Clifford
case with a näıve definition, one would probably intro-
duce a basis for first order differential forms D1, . . . , D�

and would define a differential df such that

df = ∂1fD1 + . . . ∂�fD�.

The condition d2 = 0 would immediately give (in view of
the noncommutativity of the differentiation operators ∂i)
that all products DiDj vanish, and the complex provides
no useful information on the syzygies of the operators.
This is not surprising, in view of the fact that we know
that any first syzygy must include quadratic terms and
therefore could not be obtained from the closure condi-
tion dω = 0 for ω = ω1D1 + . . . + ω�D�, a 1-form. If
one could develop an appropriate theory of forms and
an appropriate notion of differential for this system, one
could expect to derive its syzygies as a closure condition
for suitable differential forms. In the next section, we
will develop the theory of megaforms which, in fact, is
inspired by this idea.

3. MEGAFORMS ON RADIAL ALGEBRAS

Definition 3.1. Let S be a set of objects which we will
consider as “abstract vector variables.” The radial alge-
bra R(S) is defined to be the associative algebra gener-
ated by S over R with the defining relations

[{x, y}, z] = xyz + yxz − zxy − zyx = 0, for x, y, z ∈ S.

(3–1)

Note that such an algebra could be constructed over
any suitable ring, though in this paper, we will confine
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ourselves to R. Let T (S) be the tensor algebra generated
by the elements of S, and let I(S) be the two-sided ideal
generated by the polynomials

[{x, y}, z].

Then
R(S) = T (S)/I(S).

We denote by r(S) the subalgebra of R(S) generated by
the so-called scalar elements {x, y} = xy + yx, x, y ∈ S.
We call r(S) the scalar subalgebra of R(S). The reason
for this terminology lies in the fact that when x and y are
not just abstract variables, but in fact represent Clifford
variables, then {x, y} is real. By Rk(S), we denote the
subspace of k-vectors in R(S) which is generated over
r(S) by “wedge products of length k” of the form

x1 ∧ ... ∧ xk :=
1
k!

∑
π

sgn(π)xπ(1)...xπ(k),

where π = (π(1), . . . , π(k)) denotes a permutation of
(1, . . . , k), and the sum is taken over all possible per-
mutations π. We have the direct sum decomposition

R(S) = R0(S) ⊕ R1(S) ⊕ . . . ⊕ Rk(S) ⊕ . . . ,

where R0(S) = r(S) are the scalar elements. The
vector derivatives ∂x, ∂y, ∂z, ..., associated to elements
x, y, z, . . . ∈ S are defined as the endomorphisms on R(S)
which satisfy the following axioms:

for x ∈ S, f ∈ r(S), F ∈ R(S), and G ∈ R(S \ {x}), it is

(D1) ∂x[fF ] = ∂x[f ]F + f∂x[F ],

[fF ]∂x = F∂x[f ] + f [F ]∂x

(D2) ∂x[FG] = ∂x[F ]G, [GF ]∂x = G[F ]∂x

(D3) ∂x[F∂y] = [∂xF ]∂y

(D4) ∂xx2 = 2x, ∂x{x, y} = 2y.

It may be shown ([Sommen 01]) that the objects ∂x[x]
are independent of the choice x ∈ S, that ∂x[x] = [x]∂x,
and that ∂x[x] is a commutative object M = ∂x[x] which
we call the abstract dimension of S.

Next, let x ∈ S be a chosen vector variable and con-
sider the other variables of S as parameters; then, an
element F ∈ R(S) may be written as a formal function
F (x) with respect to the variable x. F (x) is called left-
monogenic if it solves the equation ∂xF (x) = 0. Simi-
larly, let us select a finite subset {x1, ..., xn} of S called
the vector variables and let us call the remaining vectors

in S “parameter vectors.” Then F ∈ R(S) may be writ-
ten into the form F (x1, ..., xn) and it is called monogenic
if it satisfies the system

∂xj
F (x1, ..., xn) = 0, j = 1, ..., n.

One may consider the inhomogeneous system of the form



∂x1f = g1

. . .
∂xn

f = gn

in the radial algebra setting, and look for its syzygies, i.e.,
the compatibility equations to be satisfied by g1, ..., gn

for this system to be solvable. Necessary conditions for
this are certainly the relations coming from the fact that
the algebra generated by {∂x1 , ..., ∂xn

} is a radial algebra
itself with relations

∂xj
{∂xk

, ∂xl
} = {∂xk

, ∂xl
}∂xj

,

namely

∂xj
(∂xk

gl + ∂xl
gk) = {∂xk

, ∂xl
}gj .

One can embed the problem in Clifford analysis using a
Clifford algebra representation

x → x =
∑

ejxj ,

setting the dimension m of the algebra equal to M , and
identifying

∂xj
→ −∂xj

= −
∑

ek∂xjk
.

This can in turn be written in terms of real coordinates
on which computer calculations with CoCoA can be used.

We will now introduce megaforms as the analogue of
classical differential forms in case the real coordinates
x1, ..., xm are replaced by abstract vector variables and
the Dirac complex is what should result from what cor-
responds to the generalized de Rham complex. This re-
placement of scalar by vector variables is in fact the key
idea behind many discoveries in Clifford analysis. To de-
fine the classical basic differential forms, one starts from
the operator d =

∑
∂xj

dxj acting on the algebra gener-
ated by x1, ..., xm, dx1, ..., dxm together with the proper-
ties

1. d(ω) = d(
∑

Fjdgj) =
∑

dFj ∧ dgj ,

2. d(fω) = df ∧ ω + fdω,

3. dxj ∧ dxk = −dxk ∧ dxj .
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In case one replaces x1, ..., xm by the generators of a ra-
dial algebra, which we will denote in the same way, it is
natural to replace the partial derivatives by the vector
derivatives ∂x1 , ..., ∂xn

, but it is not so clear how to gen-
eralize the properties above. Instead, we try to generalize
the formula “d =

∑
∂xj

dxj
” in the case of vector deriva-

tives ∂x1 , ..., ∂xn
, which themselves satisfy the defining

relations for a radial algebra. To be able to make use
of the radial algebra defining relations, we will construct
spaces Fk of forms, and differentials dk : Fk → Fk+1

such that dk+1dk = 0. However, we will recognize that
the differentials dk may consist of two pieces: a “degree
one” piece dk

1 of the form
∑m

j=1 Dk
j ∂j and a “degree two”

piece dk
2 of the form

∑m
i,j=1 Dk

ij∂i∂j . The symbols of de-
gree one, Dk

j , are the Dirac analogue of the dxj which are
used in the classical de Rham complex, while the sym-
bols of degree two, Dk

ij , are new symbols which will be
necessary to reflect the existence of quadratic syzygies.
As such, these symbols will have to satisfy some axioms
in order to guarantee dk+1dk = 0. Note also that the
symbol Dk

j and the symbols Dk
ij may, a priori, depend

on k, though we will see the full theory can be developed
with only a minimal dependence on k.

Definition 3.2. Let x1, ..., xn ∈ S; then the alge-
bra M(x1, ..., xn;S) of free megaforms in the variables
x1, ..., xn with coefficients in R(S) is the associative alge-
bra which is generated over the algebra R(S) by the set of
“basic megaforms” {Dk

i ,Dk
j� : i, j, � = 1, ..., n} together

with the identities derived by dk+1dk = 0.

To our purposes, the position of the various symbols
Dk

i , Dk
j� in the relations we obtain makes clear that we

can omit the top label. It suffices to keep in mind that the
relations obtained for Dj� = Dk

j� at the k-th step cannot
be used for Dj� = Dk+1

j� . From now on, we will write
Di, Dj�, and we will leave it to the reader to distinguish
among the different levels (in fact, the order in which
they appear identifies their level immediately).

A full description of this theory is beyond our grasp at
this point, but in the next two sections, we will provide
the treatment for the case of two and three Dirac opera-
tors, as well as some conjectures for the general case.

4. THE CASE OF TWO DIRAC OPERATORS

Let R be the space of monogenic functions in two vari-
ables x1, x2. Let F0 be the space of C∞ functions in
x1, x2 and let F1 be the space of “1-forms” whose ele-
ments are written as g =

∑2
i=1 Digi, gi ∈ F0, so that

if d0 =
∑2

i=1 Di∂i, where ∂i = ∂xi
, we have an exact

sequence

0 → R ↪→ F0
d0

→ F1.

The next step in the construction of the complex con-
sists in defining a space F2 of “2-forms” and a suitable
“differential” d1 : F1 → F2 such that d1d0 = 0. As we
explained in Section 3, we postulate that d1 be made of
two components d1

1 and d1
2 of degrees, respectively, one

and two. Thus, we assume, for g ∈ F1,

d1g = d1
1g + d1

2g =
2∑

j,k=1

DkDj∂kgj +
2∑

i,j,k=1

DkiDj∂k∂igj .

The condition d1d0 = 0 implies that∑2
j,k=1 DkDj∂k∂jf = 0, i.e., that for any k and j,

DkDj = 0. But then, because of the form of elements in
F1, one has that d1

1 ≡ 0, and therefore

d1g = d1
2g =

2∑
i,j,k=1

DkiDj∂k∂igj .

Proposition 4.1. Let d0 = D1∂1+D2∂2 and d1 = D11∂
2
1 +

D12∂1∂2 + D21∂2∂1 + D22∂
2
2 . Then d1d0 = 0 implies the

following:

DijDi = 0 i, j = 1, 2

DiiDj + DjiDi = 0 i, j = 1, 2, i 
= j. (4–1)

Proof: The condition d1
2d

0 = 0 implies that for any f ∈
F0, it is

2∑
i,j,k=1

DkiDj∂k∂i∂jf = 0.

By writing explicitly the right-hand term, we obtain

(D11D1∂
3
1 + D12D1∂1∂2∂1 + D21D1∂2∂

2
1

+ D22D1∂
2
2∂1 + D11D2∂

2
1∂2 + D12D2∂1∂

2
2

+ D21D2∂2∂1∂2 + D22D2∂
3
2)f = 0,

so that, using the radial algebra defining relations ∂2
i ∂j =

∂j∂
2
i , i 
= j, and grouping the various terms, we get the

statement.

Remark 4.2. The relations (4–1) are the analogues of the
complex relations dz̄1 ∧ dz̄2 = −dz̄2 ∧ dz̄1, dz̄i ∧ dz̄i = 0.

We now study the kernel of the map d1 : F1 → F2

and we show that a 1-form g is d1-closed if and only if
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its components gj satisfy the compatibility conditions of
the system d0f = g.

Proposition 4.3. Let g = D1g1 + D2g2 be an element of
F1. Then d1g = 0 if and only if

∂2
i gj − ∂j∂igi = 0, i = 1, 2, (4–2)

i.e., d1g = 0 if and only if (g1, g2) satisfy the compatibility
conditions for the solvability of the system

{
∂1f = g1

∂2f = g2.

Proof: By the definition of g and d1, we have that d1g = 0
can be written as

D11D1∂
2
1g1 + D11D2∂

2
1g2 + D12D1∂1∂2g1

+ D12D2∂1∂2g2 + D21D1∂2∂1g1 + D21D2∂2∂1g2

+ D22D1∂
2
2g1 + D22D2∂

2
2g2 = 0.

In view of (4–1), this can be rewritten as

D11D2(∂2
1g2 − ∂2∂1g1) + D22D1(∂2

2g1 − ∂1∂2g2) = 0,

which completes the proof.

We know, from the general theory, that the complex
closes with one more linear condition that is the compat-
ibility condition for the solvability of the system

{
∂2
1g2 − ∂2∂1g1 = h12

∂2
2g1 − ∂1∂2g2 = h21.

(4–3)

We wish to show how this condition can be derived using
megaforms and their closure.

Proposition 4.4. Let d1 = D11∂
2
1 +D12∂1∂22+D21∂2∂1 +

D22∂
2
2 and let d2 = D1∂1 + D2∂2 + D11∂

2
1 + D12∂1∂22 +

D21∂2∂1 + D22∂
2
2 ; then d2d1 = 0 implies for i, j =

1, 2, i 
= j

DiDiiDj = 0 D2
iiDj = 0 DiiDjjDi − DijDiiDj = 0,

DijDjjDi = 0,

and
D2D11D2 + D1D22D1 = 0.

Proof: Because of the previous computations, we know
that for any g ∈ F1,

d2d1g = d2[D11D2(∂2
1g2−∂2∂1g1)+D22D1(∂2

2g1−∂1∂2g2)].

This expression can be split into two parts, the first con-
taining degree 3 derivatives in g:

D1D11D2(∂3
1g2−∂1∂2∂1g1)+D2D11D2(∂2∂

2
1g2−∂2

2∂1g1)

+D1D22D1(∂1∂
2
2g1−∂2

1∂2g2)+D2D22D1(∂3
2g1−∂2∂1∂2g2);

and the second in which the degree 4 derivatives appear:

D2
11D2(∂4

1g2 − ∂2
1∂2∂1g1) + D11D22D1(∂2

1∂2
2g1 − ∂3

1∂2g2)

+ D12D11D2(∂1∂2∂
2
1g2 − ∂1∂

2
2∂1g1)

+ D12D22D1(∂1∂
3
2g1 − ∂1∂2∂1∂2g2)

+ D21D11D2(∂2∂
3
1g2 − ∂2∂1∂2∂1g1)

+ D21D22D1(∂2∂1∂
2
2g1 − ∂2∂

2
1∂2g2)

+ D22D11D2(∂2
2∂2

1g2 − ∂3
2∂1g1)

+ D2
22D1(∂4

2g1 − ∂2
2∂1∂2g2).

By setting each of them equal to zero, by using the radial
algebra relations on the derivatives of g (essentially these
relations reduce to the commutativity of ∂2

i with any ∂j ,
i, j = 1, 2), and by setting equal to zero the coefficients
of all the independent derivatives, we finally obtain the
desired result.

Proposition 4.5. Let h = D11D2h12 + D22D1h21 be a
generic element in F2. Then d2h = 0 if and only if

∂1h21 + ∂2h12 = 0,

i.e., d2h = 0 if and only if h = (h12, h21) satisfies the
compatibility condition for the system (4–3).

Proof: By the definition of h ∈ F2 and d2, and by using
the monomial relations from the previous proposition, we
have that d2h = 0 can be written as

D1D22D1∂1h21 + D2D11D2∂2h12 + D11D22D1∂
2
1h21

+ D12D11D2∂1∂2h12 + D21D22D1∂2∂1h21

+ D22D11D2∂
2
2h12 = 0.

If we now use the binomial relations from the previous
proposition, we obtain

D1D22D1(∂1h21 + ∂2h12) + D11D22D1(∂2
1h21 + ∂1∂2h12)

+ D21D22D1(∂2∂1h21 + ∂2
2h12) = 0.

Noting the independence of the symbols for the 3-forms
and the fact that the coefficients of the last two forms
depend on the coefficient of the first form, we obtain the
result.
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On the basis of what we know from the syzygies of the
Dirac complex in two operators, we would now expect
that the complex of differential forms should be natu-
rally close to zero. In fact, we can easily establish that
the differential operator d3 is identically zero on F3 and
therefore we have the following result that concludes the
description in the case of two variables:

Theorem 4.6. Monogenic functions in two variables can
be embedded in the following de Rham-like complex:

0 → R ↪→ F0
d0

→ F1
d1

→ F2
d2

→ F3
d3

→ 0.

Proof: As in the case of lower degree forms, we begin
by establishing what relations are implied by d3d2 = 0.
Define d3 = D1∂1+D2∂2+D11∂

2
1 +D12∂1∂22+D21∂2∂1+

D22∂
2
2 . Since

d2h = D1D22D1(∂1h21 + ∂2h12)

+ D11D22D1(∂2
1h21

+ ∂1∂2h12) + D21D22D1(∂2∂1h21 + ∂2
2h12)

and using the relations obtained from the previous propo-
sition, we argue as in the previous proofs and obtain the
following relations on the coefficients for degree 3 deriva-
tives,

DiD11D22D1 + Di1D1D22D1 = 0

Di2D1D22D1 + DiD21D22D1 = 0 i = 1, 2,

and for the degree 4 derivatives,

D2
11D22D1 = 0

D22D21D22D1 = 0

D12D11D22D1 = 0

D2
21D22D1 = 0

D1iD21D22D1 + D2iD11D22D1 = 0 i = 1, 2.

Let ω be a form in F3. By the computations done earlier,
ω can be written as

ω = D1D22D1ω1 + D11D22D1ω2 + D21D22D1ω3.

We now use the relations we have just found and easily
get d3ω ≡ 0.

Remark 4.7. The de Rham-like complex which we have
constructed is self dual in the sense that d2 is the trans-
pose of d0. This is not surprising because the same struc-
ture occurs in the resolution of the Dirac system in two
variables,

0 −→ R2m

(−4) −→ R2·2m

(−3) −→ R2·2m

(−1)

−→ R2m −→ M2 −→ 0.

5. THE CASE OF THREE VARIABLES

We now deal with the complex of three Dirac operators
whose complete description, originally given in [Sabadini
et al. 02], has been recalled in Section 2. Let R be the
space of monogenic functions in three variables x1, x2, x3.
Let F0 be the space of C∞ functions in x1, x2, x3 and let
F1 be the space of “1-forms” whose elements are written
as g =

∑3
i=1 Digi, gi ∈ F0, so that if d0 =

∑3
i=1 Di∂i,

where ∂i = ∂xi
, we have an exact sequence,

0 → R ↪→ F0
d0

→ F1.

The next step in the construction of the complex con-
sists in defining a space F2 of “2-forms” and a suitable
“differential” d1 : F1 → F2 such that d1d0 = 0. As in
the case of two operators, one immediately sees that the
first order differential d1 does not have the degree one
component d1

1, so that

d1g = d1
2g =

3∑
i,j,k=1

DkiDj∂k∂igj .

We have the following proposition:

Proposition 5.1. Let d0 =
∑3

i=1 Di∂i and d1 =∑3
i,j=1 Dij∂i∂j. Then d1d0 = 0 implies the following:

DijDi = 0, i, j ∈ {1, 2, 3}
DiiDj + DjiDi = 0, i, j ∈ {1, 2, 3} i 
= j

DikDj + DjkDi = 0, (i, j, k) = (1, 3, 2), (3, 2, 1), (2, 1, 3)

D23D1 + D31D2 + D12D3 = 0.
(5–1)

Proof: The condition d1
2d

0 = 0 implies that for any f ∈
F0, it is

3∑
i,j,k=1

DkiDj∂k∂i∂jf = 0.

By writing the right-hand term explicitly, by using the
radial algebra defining relations ∂2

i ∂j = ∂j∂
2
i , i 
= j, and

grouping the various terms, we get the statement.

We now study the kernel of the map d1 : F1 → F2

and we show that a 1-form g is d1-closed if and only if
its components gj satisfy the compatibility conditions of
the system d0f = g.
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Proposition 5.2. Let g =
∑3

i=1 Digi be an element of F1.
Then d1g = 0 if and only if

∂j∂igi − ∂2
i gj = 0, i, j = 1, 2, 3 i 
= j

{∂2, ∂3}g1 − ∂1∂2g3 − ∂1∂3g2 = 0

{∂1, ∂3}g2 − ∂2∂1g3 − ∂2∂3g1 = 0,

(5–2)

i.e., d1g = 0 if and only if (g1, g2, g3) satisfy the compat-
ibility conditions for the solvability of the system




∂1f = g1

∂2f = g2

∂3f = g3.

Proof: By the definition of g and d1, we have that d1g = 0
can be written as

3∑
i,j,k=1

DijDk∂i∂jgk = 0.

In view of (5–1), this can be rewritten in the form

3∑
i,j=1,i �=j

DiiDj(∂j∂igi − ∂2
i gj)

+ D12D3({∂2, ∂3}g1 − ∂1∂2g3 − ∂1∂3g2)

+ D31D2({∂1, ∂3}g2 − ∂2∂1g3 − ∂2∂3g1) = 0.

Setting the coefficients of the independent symbols of the
forms equal to zero, we get the statement.

Remark 5.3. The computations which we have just con-
cluded show that the space F2 is generated by eight differ-
ent symbols of the type DijDk. More precisely, a 2-form
h ∈ F2 can be written as

h = D33D1h331 + D22D1h221 + D11D2h112 + D11D3h113

+ D22D3h223 + D33D2h332 + D31D2h312 + D12D3h123.

From [Sabadini et al. 02], we know that the next stage
of the complex should yield six linear syzygies and six
quadratic syzygies. These are the syzygies of the system




∂j∂igi − ∂2
i gj = hiij i 
= j

{∂2, ∂3}g1 − ∂1∂2g3 − ∂1∂3g2 = h123

{∂1, ∂3}g2 − ∂2∂1g3 − ∂2∂3g1 = h213.
(5–3)

The same result can be proved using megaforms, once we
have computed the relations among the symbols Di, Dj�.
This is done in the next proposition:

Proposition 5.4. Let d1 be as above and let d2 =∑3
i=1 Di∂i +

∑3
i,j=1 Dij∂i∂j. Then d2d1 = 0 implies

DiDiiDj = 0 i 
= j
DiDjjDi − DjDiiDj = 0 i 
= j
D1D22D3 = D3D22D1 = D2D31D2, D2D12D3 = 0
D1D31D2 = 0,
D3D11D2 = D2D11D3 = −D1D12D3

D3D12D3 = D1D33D2 = D2D33D1 = −D3D31D2

(5–4)
and

DijDjjDi = 0 D2
iiDj = 0 i 
= j, i, j ∈ {1, 2, 3}

DiiDjjDi = DijDiiDj i 
= j, i, j ∈ {1, 2, 3}
(5–5)

DjiDjjDk = −DkjDjjDi = DijDjjDk,
DjkDjjDi = 0, (i, j, k) = (1, 2, 3), (2, 1, 3), (2, 3, 1)

DiiD31D2 = −DiiD12D3 = D21DiiD3 i = 1, 2
D32D33D1 = D33D12D3, D33D31D2 = 0

(5–6)
D2

31D2 = D2
12D3 = D32D12D3 = D23D11D2 = 0

D21D12D3 = D12D31D2 = D13D22D1 = D21D31D2

= D32D11D2 = 0
D31D22D3 = D32D31D2,
D32D11D3 = −D31D12D3

D21D33D2 = D23D12D3 = −D23D31D2

D31D22D1 = D22D11D3 = −D11D22D3,
D13D12D3 = D12D33D1 = −D13D31D2

D22D33D1 + D33D22D1 − D23D12D3 − D32D31D2 = 0
D33D11D2 + D31D12D3 − D13D12D3 + D11D33D2 = 0
DjiDkkDi + DiiDkkDj − DjkDiiDk − DikDijDk = 0

(i, j, k) = (1, 2, 3), (3, 1, 2).
(5–7)

Proof: Let us compute d2d1g for any g ∈ F1. We have

d2d1g = d2[D11D2(∂2∂1g1 − ∂2
1g2)

+ D11D3(∂3∂1g1 − ∂2
1g3)

+ D22D1(∂1∂2g2 − ∂2
2g1) + D22D3(∂3∂2g2 − ∂2

2g3)

+ D33D1(∂1∂3g3 − ∂2
3g1) + D33D2(∂2∂3g3 − ∂2

3g2)

+ D12D3(∂2∂3g1 + ∂3∂2g1 − ∂1∂2g3 − ∂1∂3g2)

+ D31D2(∂2∂1g3 + ∂2∂3g1 − ∂1∂3g2 − ∂3∂1g2)].

We may rewrite this expression by grouping the terms
containing degree 3 derivatives of the gi. The terms con-
taining two different indices give the first two relations,
while the terms containing all the indices 1, 2, 3 can be
grouped according to the number of indices 1, 2, and 3
appearing. This gives the remaining degree 3 relations.
Analogously, one can compute d2d1g for any g ∈ F1. To
treat this case, one needs to write and group 180 sum-
mands. For the sake of brevity, we will write explicitly
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only two examples of computations: one containing two
different indices and one containing three different in-
dices. The other cases, that can be more complicated,
are treated in a similar way.

Let us begin with the case in which only two different
indices appear and that will give the relations of the form
(5–5): We look at the summands containing 1, 1, 2, 2, 2.
Using the radial algebra relations, one gets

(D21D22D1 − D22D11D2)∂3
2∂1g1 − D12D22D1∂1∂2∂1∂2g2

+ D12D22D1∂1∂
3
2g1 + (D22D11D2 − D21D22D1)∂2

1∂2
2g2

= 0.

By setting the coefficients of the independent deriva-
tives equal to zero, one gets relations of the form
(5–5). Now we look at the summands containing the
indices 1, 3, 2, 2, 2:

(D23D22D1 − D22D31D2 − D22D12D3)∂3
2∂3g1

+ (D32D22D1 − D22D12D3)∂3∂
3
2g1

+ (−D22D31D2 + D21D22D3)∂3
2∂1g3

+ (D22D12D3 + D12D22D3)∂1∂
3
2g3

+ D22D31D2∂
2
2∂3∂1g2

+ (D22D31D2 + D22D12D3)∂2
2∂1∂3g2

− D21D22D3∂2∂1∂3∂2g2 − D32D22D1∂3∂2∂1∂2g2

− D23D22D1∂2∂3∂1∂2g2 − D12D22D3∂1∂2∂3∂2g2.

The derivatives of g1 and g2 are independent and their co-
efficients can be set equal to zero, while for the derivatives
of g2, we can use the radial algebra relations. For exam-
ple, by replacing ∂3∂2∂1 with ∂2∂1∂3 + ∂1∂2∂3 − ∂3∂1∂2,
we get

(D22D31D2 + D32D22D1)∂2
2∂3∂1g2

+ (D22D31D2 + D22D12D3)∂2
2∂1∂3g2

− (D21D22D3 + D32D22D1)∂2∂1∂3∂2g2

− D23D22D1∂2∂3∂1∂2g2

− (D12D22D3 + D32D22D1)∂1∂2∂3∂2g2.

Setting the coefficients equal to zero, we get

D21D22D3 = −D32D22D1 = D12D22D3 = D22D31D2

= −D22D12D3,

D23D22D1 = 0

that are relations of the form (5–6). All the other pos-
sible alignments of five indices chosen in {1, 2, 3} of the
form i, i, i, j, k give similar relations while the case of form
i, i, j, j, k is more complicated, but can be treated in a
similar way and give the relations of the form (5–7).

Proposition 5.5. Let h =
∑3

i,j=1,i �=j DiiDjhiij +
D12D3h123 + D31D2h312 be a generic element in F2.
Then d2h = 0 if and only if

∂jhiij + ∂ihjji = 0 i, j = 1, 2, 3
∂1h123 − ∂2h113 − ∂3h112 = 0
∂2h312 + ∂1h223 + ∂3h221 = 0
∂1h332 + ∂2h331 + ∂3h123 − ∂3h312 = 0

(5–8)

and

∂2
i hjji + ∂i∂jhiij = 0, i, j = 1, 2, 3

∂2
i h312 − ∂2

i h123 + {∂i, ∂j}hii3 − ∂3∂1hiij = 0,
i, j = 1, 2, i 
= j

∂2
3h123 + {∂2, ∂3}h331 − ∂1∂3h332 = 0

∂2
i hjjk − ∂2

j hiik − ∂k∂ihjji = 0, (i, j, k) = (1, 2, 3)
∂2

i h33j − ∂2
3hiij − ∂j∂ih33i = 0, i, j = 1, 2 i 
= j

∂i∂jh33j + ∂i∂3hjj3 = 0, i, j = 1, 2 i 
= j
∂3∂1h123 − ∂3∂2h113 − ∂2

3h112 = 0
∂2
2h331 + ∂3∂1h223 + ∂3∂2h312 − ∂1∂2h332 = 0

∂2
2h331 + ∂2∂1h332 + ∂2∂3h123 − ∂2∂3h312 = 0

{∂1, ∂2}h331 + ∂1∂3(h123 − h312) + ∂2
3h112 = 0.

(5–9)

Proof: By the definition of h ∈ F2, of d2, and by using
the monomial relations (5–4) in the previous proposition,
we can write the relation d2h grouping the various terms,
according to the number of indices. We get

(D1∂1 + D2∂2 + D3∂3)h = D1D33D1(∂1h331 + ∂3h113)

+ D1D22D1(∂1h221 + ∂2h112)

+ D2D33D2(∂2h332 + ∂3h223)

+ D1D22D3(∂1h223 + ∂3h221 + ∂2h312)

+ D1D33D2(∂1h332 + ∂2h331 + ∂3h123 − ∂3h312)

+ D1D12D3(∂1h123 − ∂2h113 − ∂3h112)

that gives the relations (5–8). We now consider∑3
i,j=1 Dij∂i∂jh = 0: the left-hand side consists of 72

summands that we will consider separately, according to
the number of indices 1, 2, 3 in it. The summands con-
taining two different indices i, j are of the form

DiiDjjDi∂
2
i hjji + D2

iiDj∂
2
i hiij + DijDjjDi∂i∂jhjji

+ DijDiiDj∂i∂jhiij + D2
jjDi∂

2
j hjji + DjjDiiDj∂

2
j hiij

+ DjiDjjDi∂j∂ihjji + DjiDiiDj∂j∂ihiij = 0,

which, using relation (5–5), gives

DiiDjjDi(∂2
i hjji + ∂i∂jhiij)

+ DjjDiiDj(∂2
j hiij + ∂j∂ihjji) = 0,

i.e., a relation of the type ∂2
i hjji + ∂i∂jhiij = 0. Now we

look at the summands containing 3 different indices of
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the type (i, i, i, j, k): Since the three different cases that
can appear can be treated in a similar way, we only treat
in detail the case (1, 1, 1, 2, 3). We have

D11D31D2∂
2
1h312 + D11D12D3∂

2
1h123

+ D12D11D3∂1∂2h113 + D21D11D3∂2∂1h113

+ D31D11D2∂3∂1h112 + D13D11D2∂1∂3h112 = 0

that, using relation (5–6), becomes

D11D31D2(∂2
1h312 − ∂2

1h123 + ∂1∂2h113

+ ∂2∂1h113 − ∂3∂1h112) = 0.

The case (2, 2, 2, 1, 3) gives a similar relation (it suffices
to exchange the role of 1 and 2 in the previous relation)
while the case (3, 3, 3, 1, 2) gives

∂2
3h123 + {∂2, ∂3}h331 − ∂1∂3h332 = 0.

Finally, we look at summands containing (i, i, j, j, k).
The case (1, 1, 2, 2, 3) is the simplest one: We get

D11D22D3∂
2
1h223 + D12D31D2∂1∂2h312

+ D2
12D3∂1∂2h123 + D22D11D3∂

2
2h113

+ D21D31D2∂2∂1h312 + D21D12D3∂2∂1h123

+ D31D22D1∂3∂1h221 + D13D22D1∂1∂3h221

+ D32D11D2∂3∂2h112 + D23D11D2∂2∂3h112 = 0,

which, using (5–6), becomes

D11D22D3(∂2
1h223 − ∂2

2h113 − ∂3∂1h221) = 0.

We look at (1, 2, 2, 3, 3) (the remaining case, (1, 1, 2, 3, 3),
can be treated in a similar way) and we get

D12D33D2∂1∂2h332 + D22D33D1∂
2
2h331

+ D21D33D2∂2∂1h332 + D31D22D3∂3∂1h223

+ D13D22D3∂1∂3h223 + D32D12D3∂3∂2h123

+ D23D31D2∂2∂3h312 + D23D12D3∂2∂3h123

+ D32D31D2∂3∂2h312 + D33D22D1∂
2
3h21 = 0,

from which we get

D33D22D1(∂1∂2h332 − ∂2
2h331 + ∂2

3h221)

+ D13D22D3(∂1∂2h332 + ∂1∂3h223)

+ D32D31D2(−∂1∂2h332 + ∂2
2h331

+ ∂3∂1h223 + ∂3∂2h312)

+ D23D12D3(∂2
2h331 + ∂2∂1h332

− ∂2∂3h312 + ∂2∂3h123) = 0,

i.e., the conditions (5–9).

Proposition 5.6. Let h be a generic element in F2. Then
d2h = 0 if and only if h satisfies the compatibility condi-
tions (2–4) for the system (5–3).

Proof: We have shown in the previous proposition that
the condition d2h = 0 is equivalent to (5–8) and (5–
9). By setting hiij = hij , h123 = a1, h312 = −a2, and
a3 = −a1 − a2, one can see that relation (5–8) coincides
with the linear syzygies at the second step given in (2–4),
while (5–9) contains the quadratic syzygies at the second
step plus some redundant relations that are implied by
the linear syzygies (like ∂2

i hjji +∂i∂jhiij = 0) or that are
dependent on the quadratic ones.

In principle, it is possible to continue following the
same procedure. At the next step, one can select a ba-
sis of the space F3: For example, one writes a generic
element in F3 as

D1D22D1R3 + D1D33D1R2 + D2D33D2R1

+ D1D33D2S3 + D1D22D3S2 + D1D12D3S1

+ D12D22D3T13 + D11D31D2T32 + D31D33D2T12

+ D33D22D1U23D11D33D2 + U13 + D11D22D3U12.

Then one finds the relations among the symbols of
megaforms and verifies that the closure conditions of d3

correspond to the compatibility conditions of the inho-
mogeneous system at this step, and then one continues in
the same way. We do not perform all those computations
here, but we only give an example by selecting a special
set of indices. If we choose to consider the alignment
(1, 1, 2, 2, 3, 3), the condition d3d2 = 0 implies

D12D1D33D2 = D21D1D33D2 = D13D1D22D3

= D31D1D22D3 = 0

D11D2D33D2 = −D22D1D33D1 = −D3D11D22D3

D33D1D22D1 = D2D11D33D2

= D3D11D22D3 − D1D33D22D1.

The usual procedure shows that the relations imposed on
an element in F3, for the given alignment of the indices,
are:

∂2
3R3 − ∂2

2R2 − ∂2
1R1 + ∂2U13 + ∂3U12 = 0

− ∂2
3R3 + ∂1U23 − ∂2U13 = 0.

Using the identity Uij + Uji = ∂kRk given in Section 2,
we get the analogue of the syzygy ∂2

3R3−∂2
1R1−∂2U31 +

∂3U12 = 0.
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These computations allow us to conjecture that this
procedure can be applied at every step producing the
following De Rham-like complex:

0 → R ↪→ F0
d0

→ F1
d1

→ F2
d2

→ F3
d3

→ F4
d4

→ F5
d5

→ 0.

More generally, it is natural to conjecture that the the-
ory of megaforms is the suitable tool to explicitly write all
the maps appearing in the Dirac complex, at least when
the dimension of the algebra is at least 2� − 1 where � is
the number of operators considered. These computations
show the difficulty of obtaining the syzygies. However,
the megaforms which we have introduced provide a di-
rect constructive process. This process, differently from
CoCoA, uses the Clifford structure directly and provides
the syzygies in terms of Clifford algebras and not of real
numbers. We believe that further experimentation along
these lines will allow us to conclusively establish this con-
jecture.
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