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The aim of this article is the study of the circumstances un-
der which a compact Riemann surface may contain two reg-
ular dessin d’enfants of different types. In terms of Fuchsian
groups, an equivalent condition is the uniformizing group being
normally contained in several different triangle groups.

The question is answered in a graph-theoretical way, pro-
viding algorithms that decide if a surface that carries a regu-
lar dessin (a quasiplatonic surface) can also carry other regular
dessins.

The multiply quasiplatonic surfaces are then studied depend-
ing on their arithmetic character. Finally, the surfaces of lowest
genus carrying a large number of nonarithmetic regular dessins
are computed.

1. INTRODUCTION

It is well known that compact Riemann surfaces given by
algebraic curves defined over Q̄ correspond exactly with
Belyi surfaces. A Belyi function, and hence the com-
plex structure of the surface, is completely determined
by the associated dessin d’enfant. The resulting function
R from dessins to the moduli spaces of compact Riemann
surfaces is not surjective, and it turns out that it is also
not injective, as nonisomorphic dessins may be defined
in the same underlying surface. In [Singerman 01] and
[Singerman and Syddall 01], the noninjectivity locus for
the restriction of R to the special class of regular clean
dessins was studied (platonic surfaces). In this article, we
study the noninjectivity of the restriction of R to a wider
class, namely that of all regular dessins (quasiplatonic
surfaces). We explore thus how several nonisomorphic
regular dessins can be found in the same surface.

The paper is organized as follows. In Section 2, we give
a very brief introduction to Belyi surfaces and dessins.
Section 3 deals with what we call surgery on uniform
dessins—the algorithms relating different regular dessins
which can be found in the same surface. The surgery
tests, those that actually determine if a given regular
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dessin is obtained from another one embedded in the
same surface, are introduced in Section 4. We turn our at-
tention to quasiplatonic surfaces in Section 5, while Sec-
tion 6 deals with the multiply quasiplatonic case in the
two different cases that may occur (arithmetic or nonar-
ithmetic types). We finish by providing the lowest genus
examples of the different multiply quasiplatonic surfaces
with the largest number of regular dessins possible.

2. BELYI SURFACES AND DESSINS D’ENFANTS

Abstract compact Riemann surfaces, e.g., two-dimen-
sional compact manifolds with complex analytic struc-
ture, have been studied from very different points of view.
On the one hand, they arise out of complex algebraic
curves, and on the other hand as quotient spaces by the
action of groups of Möbius transformations.

These two settings are related in a highly obscure way,
but the connection can sometimes be shown more explic-
itly, as in the case of Belyi surfaces. We shall just provide
a brief introduction to them in this section, but the in-
terested reader can find the details in [Cohen et al. 94]
or [Jones and Singerman 96] and in the references given
there. Note that Jones and Singerman often use the lan-
guage of hypermaps instead of that of dessins that we
employ here.

In the abstract setting, a Belyi surface is defined to be
a compact Riemann surface X for which a holomorphic
function β : X → Ĉ with at most three branch values
can be defined. Such a β is called a Belyi function, and
the branch values can be supposed to be contained in
{0, 1,∞} after normalization. The following famous re-
sult makes clear why this class of surfaces is so interesting
(for the proof, see [Belyi 80] or [Wolfart 97]).

Theorem 2.1. (Belyi.) X is a Belyi surface if and only if
the corresponding algebraic curve can be defined over Q̄.

Suppose β : X → Ĉ is a Belyi function. We associate
to β an embedded graph in X by considering β−1{t ∈
R | 0 ≤ t ≤ 1}. This is a bipartite graph (its vertices
being β−1{0, 1}), since we can colour the preimages of 0
in black, and the preimages of 1 in white, and then every
two adjacent vertices have different color. This motivates
the following:

Definition 2.2. A dessin d’enfant is a bipartite graph D
embedded in a compact Riemann surface X, such that
each component of X � D is simply connected. Those
components are called the faces of D.

The combinatorial structure of a given dessin D can
be encoded in the following way: Label the edges of D
with numbers 1, 2, . . . , N . Now, if a black vertex is fixed,
several edges are adjacent to it, and the anticlockwise
orientation of the surface gives a cyclic permutation of
them. Hence, if D contains B black vertices, we get a
permutation rb that is a product of B disjoint cycles,
and the length of each cycle is the valency of the corre-
sponding black vertex. In the same way, we construct
a permutation rw looking at the white vertices, and we
find that the cycles of the permutation rf = (rwrb)−1

give information about the faces, since every cycle de-
scribes half the edges going around a face. Thus, a cycle
of length k of rf corresponds to a 2k-gonal face.

We say that D is of type (l,m, n) if l (respectively, m)
is the least common multiple of the valencies of the black
vertices (respectively, the white vertices), and n is half
the least common multiple of the face valencies. These
are, of course, just the orders of rb, rw, and rf . The sub-
group GD of SN generated by these three permutations
is called the monodromy group of the dessin.

It is not difficult to reconstruct the dessin from its
monodromy, since rb, rw, and rf carry all the combina-
torial information.

In fact, the complex structure of a Belyi surface is
determined by its dessin. More precisely, the combina-
toric data of the dessin determines a Fuchsian group that
gives as quotient space the Belyi surface. Given the in-
tegers l,m, and n, let T (l,m, n) be a hyperbolic triangle
from angles π/l, π/m, and π/n. Construct the group
∆̃(l,m, n) generated by the reflections across the three
sides of T (l,m, n). Let ∆(l,m, n) be the index two sub-
group formed by the orientation preserving elements of
∆̃(l,m, n) (these are the words of even length in the three
reflections). The Fuchsian group ∆(l,m, n) is called a
triangle group, and it has the well-known presentation
< γb, γw, γf ; γl

b = γm
w = γn

f = γfγwγb = 1 > (the three
generators giving this presentation can be chosen in some
geometrical way, as explained at the beginning of Section
4.1).

There is a natural group homomorphism determined
by every dessin D of type (l,m, n), going from the triangle
group ∆(l,m, n) onto some group of permutations, its
definition being simply

θ : ∆(l,m, n) −→ GD
γi �−→ ri

for i = b, w, f .
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Now, if Gk is the stabilizer of some k in GD, let us
denote Γ = θ−1{Gk}. This Γ is a cocompact Fuchsian
group inside ∆(l,m, n), its index being the number N of
sides of D; Γ is called the fundamental group of D inside
∆(l,m, n). It is well defined, in terms of D, up to conju-
gacy in ∆(l,m, n). Thus D/Γ is the Riemann surface un-
derlying the dessin D, and the Belyi function corresponds
just to the natural projection D/Γ → D/∆(l,m, n).

An important characterization of Belyi surfaces in
terms of Fuchsian groups is then:

Theorem 2.3. X is a Belyi surface if and only if it is
isomorphic to D/Γ, where Γ is a subgroup of a Fuchsian
triangle group.

Remark 2.4. The roles played by the vertices and faces of
a dessin may always be interchanged. For instance, color-
ing the vertices with the opposite color, keeping incidence
relations unchanged, gives again a dessin. In terms of Be-
lyi functions, this corresponds just to the fact that 1− β

is again a Belyi function when β is.
We could also keep the role of black vertices, and in-

terchange those of the white vertices and the faces, by
doing the following: Mark one point in the interior of
each face, and remove the former white vertices. These
marked points will be the new set of white vertices. The
incidence relations are obtained by looking around each
former white vertex. Suppose v is one of them: Around
it, we find alternatively new white vertices (as many as
the number of closed faces that contained v) and black
vertices (exactly those that were incident with v), that
in the new dessin form a circular subgraph. Obviously,
the former white vertices correspond to the faces of the
new dessin and vice versa. In terms of Belyi functions,
what we have done is replace β with β/(β − 1).

Of course, the interchange of the role of black vertices
and faces can be done in a similar way, leading the re-
placement of β by 1/β.

All the dessins that are obtained from a given one
by this procedure carry no additional information. Thus
we shall consider them equivalent. Nevertheless, in the
sequel, we will make few explicit references to this equiv-
alence relation. We will choose a representative follow-
ing a convention: When we talk about a dessin of type
(l,m, n), the three periods will refer respectively to black
vertices, white vertices, and faces, in that order. Also, we
arrange the periods in increasing order in almost all cases.
There will be only one exception to this rule: When two
of the periods are equal, it will be very convenient to let
the other period refer to the faces, even if the latter is

smaller than the first couple (we work, for instance, with
dessins of type (7, 7, 3) instead of (3, 7, 7)).

Remark 2.5. Fuchsian triangle groups have the remark-
able rigidity property of being determined, up to con-
jugation in PSL(2, R), by the three periods. In fact, the
ordering of the periods is also not relevant. Here we treat
triangle groups because of their relation with dessins, so
we use the same convention as in Remark 2.4 for the
ordering of their periods.

A very interesting class of dessins, and hence of Belyi
surfaces, is called uniform. These are dessins of type
(l,m, n) such that all the cycles of rb have length l, and
accordingly all the cycles of rw and rf have length m and
n, respectively. This means that all the black vertices
(respectively, white vertices or faces) of the dessin have
the same valency.

If D is uniform, it is easy to see that the corresponding
Γ acts in the hyperbolic disc without fixing points. If
not, let 1 �= γ ∈ Γ be an element with a fixed point in
D. Then γ has finite order, and therefore it is conjugate
in the corresponding triangle group ∆(l,m, n) to some
nontrivial power of γi for i = b, w, or f . Suppose without
loss of generality that it is conjugate to γt

b, where 0 <

t < l. All the cycles of θ(γ) have equal length, since
θ(γ) is conjugate to rt

b in GD. Now, as θ(γ) belongs to
the stabilizer Gk, it follows that θ(γ) = 1, and therefore
θ(γt

b) = rt
b = 1, which is obviously absurd.

The fundamental group of a uniform dessin inside the
group ∆(l,m, n) is then a uniformizing group for the un-
derlying surface, and then it is isomorphic to the topo-
logical fundamental group of the surface (this explains
the notation employed). A surface that carries a uniform
dessin is in turn called a smooth or uniform Belyi surface.
Since not every dessin is uniform, not every Belyi surface
is smooth.

Now, let an automorphism of a dessin be simply a bi-
jection of its set of edges that commutes with rb and rw,
and hence with rf . It turns out that every automorphism
in the dessin sense defines an automorphism (biholomor-
phic self-mapping) of the underlying Belyi surface, al-
though the group of automorphisms of the surface could
still be larger.

When the automorphism group acts transitively on
the set of edges, the fundamental group of the dessin
inside the triangle group is exactly the kernel of θ, as the
stabilizer Gk is in that case trivial. Hence the group Γ
turns out to be a normal subgroup of the corresponding
triangle group. These types of dessins are called regular.
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FIGURE 1. The action of the type 1 truncation in a face (n = 4).

3. SURGERY ON UNIFORM DESSINS

We introduce a concept that we will use often from now
on.

Definition 3.1. A surgery is a function S from the class
of (l′,m′, n′)-uniform dessins to the class of (l,m, n)-
uniform dessins such that:

i) S(D′) is embedded in the same surface as D′;

ii) the set of vertices, and also the incidence relations
of S(D′), is defined in terms of those of D′ by an al-
gorithm that depends only on the periods l′,m′, and
n′, and not on the particular combinatorial structure
of D′, neither on the surface underlying D′;

iii) S(D′) has more edges than D′.

We proceed now to describe the basic surgery pro-
cedures. The first four are generic (they are defined
in a one- or two-parametric family of types of uniform
dessins), and the last four are rigid, in the sense that they
can be done just on a unique type of dessins. Through
the descriptions, when the vertices around a face are de-
noted by b1, w1, b2, w2, . . ., it should be understood that
the labels correspond to the (alternate black and white)
vertices that lie on the border of that face, according to
the orientation of the surface. Other points labeled with
a “b” or “B” will always be black, while points labeled
with “w” or “W” will be white.

Baricentral surgery. Let D be a uniform dessin of type
(n, n, n). The baricentral dessin Bar(D) is constructed
defining its white and black vertices by the same proce-
dure in all the faces of D. Let b1, w1, . . . , bn, wn be the
vertices in the border of a face of D, counted according
to the orientation of the surface. Choose a point p in the
interior of the face, and points pj (respectively, qj) for
j = 1, . . . , n in the interior of the edge [bj , wj ] (respec-
tively, [wj , bj+1]). Mark now one point Bi (B stands for

black) in the interior of [p,pi], the geodesic arc joining p

with pi (i = 1, . . . , 2n), and also a point Wi (white) in the
interior of [p, qi]. Each time it occurs that two faces of
D meet in one edge, then the vertices of Bar(D) we have
created corresponding to that edge, one inside each of the
faces of D, have opposite color. They become adjacent
vertices in Bar(D). Finally, join Bi with Wi and Wi−1.
This way, every white vertex, black vertex, or face of D
corresponds now to a face of Bar(D), that is uniform of
type (3, 3, n).

Medial surgery. If D is uniform of type (n, n,m), then
the medial dessin Med(D) is constructed as follows. Ev-
ery black or white vertex of D is turned a white vertex of
Med(D), its black vertices being the midpoints of edges
of D. Every black vertex of Med(D) is now joined just
with the two endpoints of the side of D on which it was,
and each white vertex is joined with n black vertices, fol-
lowing the sides of D. Clearly, Med(D) is uniform and
has type (2, n, 2m).

Type 1 truncation surgery. The dessin Trunc1(D) is
a (2, 3, 2n) uniform dessin constructed from a given
(2, n, 2n) uniform dessin D as follows: The vertices of
Trunc1(D) are of two kinds: the black vertices of D,
that will still be black vertices of Trunc1(D), and a set
of newly created vertices, in the following way. Let
b1, w1, . . . , b2n, w2n be the vertices in the boundary of
a face of D. Choose a point p in the interior of the
face, and mark a point in [p, bj ] as a white vertex Wj

of Trunc1(D), and also a point Bj in [p,wj ] as a black
vertex of Trunc1(D), for j = 1, . . . , 2n. Set the incidence
relations as follows: Bj is joined by an edge with Wj and
Wj+1, and bj is joined with Wj . This way the faces of
Trunc1(D) are in one-to-one correspondence with both
the faces and the white vertices of D.

Type 2 truncation surgery. Suppose that D is a
(3, n, 3n)-uniform dessin. The construction of the
type 2 truncation Trunc2(D) goes as follows. Let
b1, w1, . . . , b3n, w3n be the vertices in the boundary of a
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face of D. Choose a point p in the interior of the face,
and points Bj in [p,wj ] and Wj in [p, bj ] as in the case of
the type 1 truncation. Choose also points B̃j in [Wj , bj ],
j = 1, . . . , 3n, and keep the black vertices of D as white
vertices of Trunc2(D), changing the label from bj to W b

j .
Now, the incidence relations that define Trunc2(D) are
as follows: Bj is joined with Wj and Wj−1, whereas B̃j

is joined with Wj and with W b
j . It is not difficult to show

that the so-created Trunc2(D) is uniform, and has type
(2, 3, 3n). It has one face for each face or white vertex of
D.

Rigid surgery R2. Let D be a uniform dessin of type
(7, 7, 2). Let f be a face of D, its border being a circular
4-graph in the vertices b1, w1, b2, and w2. Let us choose
the following points: B in the interior of f , pj in the inte-
rior of the side [bj , wj ], j = 1, 2, and qj in the interior of
[wj , bj+1]. Now, let W p

j be some point in the interior of
the line [B, pj ]. Choose also two points Bb

j and W b
j in the

line [W p
j , bj ] with Bb

j closer than W b
j to W p

j and, in a sim-
ilar way, choose Bw

j and Ww
j in the line [W p

j , wj ]. Finally,
choose B̃w

j (respectively, B̃b
j ) in the interior of the trian-

gle [Ww
j , wj , qj ] (respectively, the triangle [W b

j , qj−1, bj ]).
Repeat the same procedure in every face of D, color the
B-points in black and the W -points in white, and define
incidence relations among them in the following way. W p

j

is joined by an edge with B,Bw
j , and Bb

j . Ww
j is incident

with Bw
j , B̃w

j , and the B̃w-type point corresponding to
wj as a vertex of fj , the other face of D that meets f at
[bj , wj ]. Similarly, W b

j is incident with Bb
j , B̃

b
j , and the

B̃b-type vertex inside fj that corresponds to bj .
It can be easily checked that the so-created dessin is

uniform and has type (2, 3, 7).

Rigid surgery R3. Let D be a uniform dessin of type
(8, 8, 3). Let f be a face of D, its border being a circular
6-graph in the vertices b1, w1, . . . , b3, w3. Let us choose
the following points: W in the interior of f , pj in the
interior of the side [bj , wj ] of D, j = 1, 2, 3, and qj in
the interior of [wj , bj+1]. Now, let Bq

j and W bw
j be two

ordered points in the (oriented) line [W, qj ] and also Bb
j ,

W b
j in the oriented line [W bw

j , bj+1], and Bw
j and Ww

j

in the oriented line [W bw
j , wj ]. Finally, choose B̃w

j (re-
spectively, B̃b

j ) in the interior of the triangle [Ww
j , wj , qj ]

(respectively, the triangle [W b
j , bj+1, pj+1]). Repeat the

same procedure in every face of D, color the B-points in
black and the W -points in white, and define incidence
relations among them in the following way. W is joined
by an edge with Bq

j , j = 1, 2, 3. W bw
j is incident with

Bq
j , Bb

j , and Bw
j . Finally, W b

j is incident with Bb
j , B̃

b
j ,

and the B̃b-type point corresponding to bj+1 as a vertex
of fj+1, the other face of D that meets f at [bj+1, wj+1].
Similarly, Ww

j is incident with Bw
j , B̃w

j , and the B̃w-type
vertex inside fj that corresponds to wj , where fj meets
f at the side [bj , wj ].

The newly created dessin is uniform of type (2, 3, 8).

Rigid surgery R5. Let D be a uniform dessin of type
(4, 4, 5), and let b1, w1, . . . , b5, w5 be the set of vertices of
the circular subgraph of D that is the border of a face
f . Choose a point p in the interior of f ; let pj and qj

be an interior point of the side [bj , wj ] and [wj , bj+1],
respectively. We construct a new set of vertices as fol-
lows. Choose points Bp

j in the interior of the line [p, pj ],
and W q

j in [p, qj ]. Also, choose Bb
j (respectively, Bw

j ) in
the interior of the line [W q

j , bj+1] (respectively, the line
[W q

j , wj ]), and color all the B-points in black and all the
W -points in white. Also, color the former black or white
vertices of D in white, changing the label from bj into
Wj,b and wj into Wj,w to make clear the change.

The incidence relations that define the new dessin are
as follows: W q

j is joined with Bw
j , Bb

j , B
p
j , and Bp

j+1.
Also Bb

j (respectively, Bw
j ) is also incident with Wj+1,b

(respectively, Wj,w). The new dessin clearly has type
(2, 4, 5), and is uniform.

Rigid surgery R7. Let D be a uniform dessin of type
(3, 3, 7), and let b1, w1, . . . , b7, w7 be the set of vertices of
the circular subgraph of D that is the border of a face
f . Choose a point p in the interior of f , let pj and qj

be an interior point of the sides [bj , wj ] and [wj , bj+1],
respectively. We construct a new set of vertices as fol-
lows: Choose points Bj in the interior of the line [p, pj ],
j = 1, . . . , 7, and (ordered in this way) W q

j , Bq
j , and W bw

j

in the directed line from p to qj . Finally, choose Bb
j (re-

spectively, Bw
j ) in the interior of the line [W bw

j , bj+1] (re-
spectively, the line [W bw

j , wj ]), and color all the B-points
in black and all the W -points in white. Also, color the
former black or white vertices of D in white, changing
the label from bj into Wj,b and wj into Wj,w to make
clear the change of its role.

The incidence relations that define the new dessin are
as follows: W q

j is joined with Bj , Bj+1, and Bq
j . W bw

j is
incident with Bq

j , Bb
j , and Bw

j . Finally, Bb
j (respectively,

Bw
j ) is also incident with Wj+1,b (respectively, Wj,w).

The new dessin has type (2, 3, 7), and is uniform.
Two of the eight preceding surgeries already appear in

[Singerman 01] and [Singerman and Syddall 01] in a way
similar to that employed here. These are the medial and
first truncation, introduced by Singerman and Syddall in
the context of maps.
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We may think also about surgery procedures following
from the composition of some of these eight basic ones:
For instance, we can pass from D to Bar(D), and then
to Med(Bar(D)). Also, it could be sometimes necessary
to pass to an equivalent dessin (interchanging the role of
vertices and faces) before doing the second surgery. For
instance, if D has type (8, 8, 4), then Med(D) has type
(2, 8, 8). After passing to the equivalent (8, 8, 2)-dessin,
another medial surgery can be performed.

Proposition 3.2. Every possible surgery can be expressed
as a composition of the eight basic surgeries, modulo
dessin equivalence.

Proof: Note first that a surgery S from (l′,m′, n′) uni-
form dessins to (l,m, n) uniform dessins exists if and
only if the triangle group ∆(l′,m′, n′) is contained in
∆(l,m, n). To see this, let Γ′ be any uniformizing
group inside ∆(l′,m′, n′). The application D/Γ →
D/∆(l′,m′, n′) is a Belyi function with associated dessin
D′, and S(D′) determines a uniformizing group Γ for the
same surface, with Γ contained in ∆(l,m, n). Conjugat-
ing if necessary, we can suppose Γ′ = Γ. It follows that
any uniformizing group inside ∆(l′,m′, n′) is also con-
tained in ∆(l,m, n), and therefore that ∆(l′,m′, n′) <

∆(l,m, n).
In fact, it is not difficult to determine the inclusions of

triangle groups that correspond to the eight basic surg-
eries:

∆(n, n, n) <3 ∆(3, 3, n) ≡ Baricentral
∆(n, n,m) <2 ∆(2, n, 2m) ≡ Medial

∆(2, n, 2n) <3 ∆(2, 3, 2n) ≡ Truncation (1)
∆(3, n, 3n) <4 ∆(2, 3, 3n) ≡ Truncation (2)

∆(7, 7, 2) <9 ∆(2, 3, 7) ≡ R2

∆(8, 8, 3) <10 ∆(2, 3, 8) ≡ R3

∆(4, 4, 5) <6 ∆(2, 4, 5) ≡ R5

∆(3, 3, 7) <8 ∆(2, 3, 7) ≡ R7,

where the subscript k in the symbol <k stands for the
index.

Now, looking at the list of possible inclusions between
triangle groups that was first given in [Singerman 72],
it can be seen that any inclusion can be expressed as a
chain of inclusions involving just these eight. Therefore,
any surgery is a composition of the basic ones.

4. SURGERY TESTS FOR REGULAR DESSINS

The image of a regular dessin after performing a surgery
is certainly uniform, but in most cases the regularity will

have been lost. Nevertheless, we are interested in regular
dessins related by surgery.

Let D′,D be regular dessins of types (l′,m′, n′)
and (l,m, n), with monodromy homomorphisms θ′ :
∆(l′,m′, n′) −→ GD′ and θ : ∆(l,m, n) −→ GD. Sup-
pose further that there exists a surgery that maps D′

into D. Both dessins are then embedded in the same
surface, that is uniformized by Γ = ker(θ) = ker(θ′).

Let us define ψ : GD′ −→ GD by ψ(x) = θ(i(γ′)),
where i stands just for the inclusion of ∆(l′,m′, n′) in
∆(l,m, n), and γ′ ∈ ∆(l′,m′, n′) is any element such that
θ′(γ′) = x.

It is not difficult to show that ψ is a well-defined in-
jective homomorphism that makes commutative the dia-
gram

∆(l,m, n) θ−→ GD
i ↑ ↑ ψ

∆(l′,m′, n′) θ′
−→ GD′ .

We will try to decide when the previous situation ac-
tually occurs. More precisely, let D be a regular dessin
of type (l,m, n) in some surface S, and suppose there ex-
ists a surgery from (uniform) dessins of type (l′,m′, n′)
to (uniform) dessins of type (l,m, n). We would like to
decide if D is the surgery image of some D′. If so, D′ is
necessarily also regular.

We proceed as follows: Starting from the monodromy
homomorphism θ : ∆(l,m, n) −→ GD of D, consider the
restriction θ|∆(l′,m′,n′). Now let π : θ(∆(l′,m′, n′)) −→
SN ′ , where N ′ = |θ(∆(l′,m′, n′))|, be the permutation
representation of θ(∆(l′,m′, n′)) given by products on
the right.

Then, if D is the surgery of the regular dessin D′,
the monodromy homomorphism of D′ is precisely π ◦
θ|∆(l′,m′,n′). On the other hand, if π ◦ θ|∆(l′,m′,n′) is
not a valid homomorphism for a regular dessin of type
(l′,m′, n′), then D is not the surgery image of a dessin of
type (l′,m′, n′) induced by the inclusion ∆(l′,m′, n′) <

∆(l,m, n).

4.1 Generators of Triangle Groups

For a practical application of the surgery tests, we need
to know the explicit expression of a set of generators of
the smaller triangle group in terms of those of the bigger
one. We will choose generators for triangle groups always
in the same way:

Consider the group ∆(l,m, n) (note Remark 2.5 about
the order in which we write the three periods l,m, and
n). It is constructed in terms of a triangle T (l,m, n)
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∆′ ∆ γ′
b γ′

w γ′
f

∆(n, n, n) ∆(3, 3, n) γf γ2
b γfγb γ2

wγfγw

∆(n, n,m) ∆(2, n, 2m) γfγ2
wγb γw γ2

f

∆(2, n, 2n) ∆(2, 3, 2n) γbγwγfγb (γ2
wγb)2 γf

∆(3, n, 3n) ∆(2, 3, 3n) γ2
wγbγ

−1
f γw γwγ3

fγ2
w γf

∆(7, 7, 2) ∆(2, 3, 7) γ2
wγbγ

5
fγw γ5

fγ2
wγbγ

2
f γb

∆(8, 8, 3) ∆(2, 3, 8) γ5
fγ2

wγbγ
3
f γ2

fγ2
wγbγ

6
f γw

∆(4, 4, 5) ∆(2, 4, 5) γbγ
4
fγwγfγb γ3

wγbγwγbγw γf

∆(3, 3, 7) ∆(2, 3, 7) γ2
wγ2

fγwγ5
fγw γ2

wγbγ
6
fγwγfγbγw γf

TABLE 1. Relation between the generators of the triangle groups involved in the basic surgeries.

FIGURE 2. Tessellations concerning the inclusions of triangle groups related to the rigid basic surgeries.

whose vertices are, in clockwise order, pl, pm, pn (the an-
gle at pj being π/j). Let γb (respectively, γw, γf ) be a
noneuclidean turn through an angle 2π/l around pl (re-
spectively, 2π/m around pm, 2π/n around pn) in anti-
clockwise order. This choice of the generators yields

< γb, γw, γf ; γl
b = γm

w = γn
f = γfγwγb = 1 > (4–1)

as a presentation of ∆(l,m, n).

Lemma 4.1. Table 1 shows a set of generators for a group
of the type of ∆′ in terms of that of ∆, both sets giving
presentations like (4–1) for ∆ and ∆′. The inclusion

∆′ < ∆ runs over the list of eight inclusions between
triangle groups associated with the eight basic surgeries.

Proof: It can be directly checked after a careful look at
the geometry of each inclusion. We can see how a group
like ∆′ fits inside ∆ by looking at a simultaneous picture
of both triangulations of the unit disc, and then with a
bit of patience one can check the relation between the
generators of both groups.

The picture of the triangulations is very easy to
guess in the case of the first four inclusions. As for
the inclusions associated to the basic rigid surgeries,
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we refer to Figure 2. It was done using the wonder-
ful package [HTessellate 94] developed in Finland for
hyperbolic geometry computations with Mathematica�

([Mathematica 03]). The tessellation by grey triangles in
Figure 2 corresponds to the bigger triangle group, and
the matrix-like displayed pictures refer to the surgeries

R2 R3

R5 R7.

5. QUASIPLATONIC SURFACES

Definition 5.1. A compact Riemann surface is called
quasiplatonic if it carries a regular dessin.

Quasiplatonic surfaces are often called regular Belyi
surfaces. They have a very interesting property: Given
a quasiplatonic surface X, if Y is not isomorphic to X

but is close enough to it in the topology of the mod-
uli space Mg of compact Riemann surfaces of genus g,
then Y has strictly less automorphisms than X. That
is the reason why they are also referred to as surfaces
with many automorphisms: Indeed, every point of Mg

with such property corresponds to a quasiplatonic sur-
face, and hence both concepts turn out to be equivalent
(see [Wolfart 97]).

By definition, S is quasiplatonic if and only if it is uni-
formized by a (torsion-free) normal subgroup Γ of some
Fuchsian triangle group ∆. The surfaces that will con-
cern us mainly in the sequel are those that are quasi-
platonic in more than one way. In terms of groups, this
means just requiring the uniformizing group Γ to be also
normally contained in a second triangle group ∆′, with
∆ �= ∆′. Recall that Γ is uniquely determined just by
the surface X.

We give the following definition in terms of dessins:

Definition 5.2. Let S be a quasiplatonic surface. We will
term it multiply or nonmultiply quasiplatonic according
to whether S carries several regular dessins or a unique
one.

It should be noted in passing that the number of reg-
ular dessins that a compact Riemann surface carries is
always finite.

We shall investigate under what circumstances a
quasiplatonic surface may, in fact, be multiply quasipla-
tonic. For that purpose, the following terminology will
be very convenient.

Definition 5.3. Let S be a quasiplatonic surface and D
a regular dessin inside S. If D cannot be obtained by
surgery on another regular dessin, we call it a minimal
regular dessin of S.

Obviously, any nonmultiply quasiplatonic surface car-
ries just one (minimal) regular dessin. For a multiply
quasiplatonic surface, minimal regular dessins always ex-
ist, but they may or may not be unique: It depends on
each particular surface.

Suppose S = D/Γ is quasiplatonic, and let ∆ be the
triangle group associated with a given minimal regular
dessin D. Let Γ be the fundamental group of D in ∆,
and consider N(Γ), the normalizer of Γ in PSL(2, R).
As N(Γ) is a Fuchsian group that contains ∆, it fol-
lows that it is a triangle group as well. It may occur
that ∆ = N(Γ), and this means that S is nonmultiply
quasiplatonic, since then D is the only regular dessin in
S.

If the inclusion ∆ < N(Γ) is proper, then S is multiply
quasiplatonic. The inclusion Γ � N(Γ) induces another
regular Belyi function, and an associated regular dessin
MD that is in that case never minimal. Of course, MD
is constructed from D by some surgery.

We then have the following lemma.

Lemma 5.4. If S is uniformized by Γ, and ∆ is the trian-
gle group that corresponds to a minimal regular dessin,
then S is multiply quasiplatonic if and only if ∆ �= N(Γ).

Or, equivalently:

Lemma 5.5. A compact Riemann surface is multiply
quasiplatonic if and only if it carries a regular dessin
that is transformed into another regular dessin by some
surgery.

At this point, the following definition is natural:

Definition 5.6. If S is a quasiplatonic surface uniformized
by Γ, denote by MD the regular dessin induced by the
inclusion Γ � N(Γ). We will refer to MD as the maximal
regular dessin of S.

Note that, contrary to the minimal regular dessins,
MD is always uniquely determined. The term maximal
in the previous definition refers to the fact that MD is
the regular dessin of the surface that has the most edges,
and never produces another dessin by surgery. It does not
refer to maximality in terms of Fuchsian groups, since the
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Case K Minimal Intermediate MD
A 5

D1, type (2n, 2n, 2n)
D2, type (4n, 4n, n)

Bar(D1)
Med(D1)

Med(Bar(D1))

B 4 D, type (n, n, n)
Bar(D)
Med(D)

Med(Bar(D1))

C 4
D1, type (2n, 2n, n)
D2, type (4, 4, n)

Med(D1) Med(D2)

D 4
D1, type (4n, 4n, n)
D2, type (3, 3, 2n)

Med(D1) Med(D2)

E 3
D1, type (2n, 2n,m)
D2, type (2m, 2m,n)

- Med(D2)

F 3
D1, type (2, n, 2n)
D2, type (3, 3, n)

- Med(D2)

G 3 D, type (2n, 2n, n) Med(D) Med(Med(D))
H 3 D, type (4n, 4n, n) Med(D) Trunc1(Med(D))
I 2 D, type (n, n, n) - Bar(D)
J 2 D, type (n, n,m) - Med(D)
K 2 D, type (2, n, 2n) - Trunc1(D)
L 2 D, type (3, n, 3n) - Trunc2(D)

TABLE 2. The possibilities for the regular dessins inside a multiply quasiplatonic surface of nonarithmetic type.

triangle group N(Γ) may be either a maximal Fuchsian
group or not.

The nonmultiply quasiplatonic case occurs obviously
when the group ∆ corresponding to a minimal regular D
is a maximal triangle group, as then there is no possible
surgery. But even if ∆ < ∆′, and hence a surgery could
be applied, it could happen that N(Γ) = ∆, since nor-
mality does not extend automatically from ∆ to a larger
supergroup (that is, the result of the surgery could be a
nonregular uniform dessin).

6. MULTIPLY QUASIPLATONIC SURFACES

In what follows, we suppose S to be a multiply quasipla-
tonic surface. Let D be a minimal regular dessin in S,
with associated triangle group ∆.

Two very different cases occur, depending on the arith-
meticity of D, which is just the arithmeticity of ∆. We
treat both situations separately.

6.1 The Nonarithmetic Case

With the exception of a finite number of signatures, tri-
angle groups are nonarithmetic (see [Takeuchi 77a]). The
nonarithmetic triangle groups are thus the generic ones.
The quasiplatonic surfaces carrying a regular dessin cor-
responding to one of these triangle groups are in turn also
called nonarithmetic. We are interested in the different

possibilities that may occur for nonarithmetic multiply
quasiplatonic surfaces.

Theorem 6.1. Let S be a multiply quasiplatonic surface of
nonarithmetic type. Let us make, as usual, no distinction
between isomorphic dessins on S. Then the complete list
of regular dessins embedded into S agrees with one of the
rows of Table 2, where K stands for the total number of
regular dessins (counting the maximal MD, as well as
all the minimal and intermediate dessins).

Proof: Let D be any minimal regular dessin inside the
multiply quasiplatonic surface S. Since, by Lemma 5.4,
N(Γ) is a larger triangle group, it follows that D is of
type (n, n,m), (3, n, 3n), or (2, n, 2n), and that a compo-
sition of basic surgeries of the generic types (baricentral,
medial, and truncations) transforms D into MD. This is
because the rigid surgeries involve only arithmetic groups
(see [Singerman 72], [Takeuchi 77a], and [Takeuchi 77b]),
and therefore they cannot appear in the nonarithmetic
surface S.

If there is just one minimal dessin D and just one ba-
sic surgery transforms it into the maximal MD, S cor-
responds to cases I to L in Table 2.

On the other hand, S could carry more than one min-
imal dessin, and also some intermediate dessins in be-
tween the minimal ones and MD. All the different pos-
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sibilities follow immediately after considering which are
the maximal chains of surgeries that could appear in the
same surface when MD is of some special type.

If the type of MD is (2, 3, 4n), we obtain case A cor-
responding to the maximal diagram

(2, 3, 4n)
↗ Trunc1 Med ↖

(2, 2n, 4n) (3, 3, 2n) ;
↑ Med ↖ Med Bar ↗

(4n, 4n, n) (2n, 2n, 2n)

also for MD of type (2, 3, 2n), we get case B, since we
have

(2, 3, 2n)
↗ Trunc1 Med ↖

(2, n, 2n) (3, 3, n) ;
↖ Med Bar ↗

(n, n, n)

whereas case C arises if the type of MD is (2, 4, 2n), as
we see

(2, 4, 2n)
↗ Med Med ↖

(2n, 2n, 2) (4, 4, n) ;
↑ Med

(2n, 2n, n)

and finally for MD of type (2, 2n, 2m), we deduce case
E from

(2, 2n, 2m)
↗ Med Med ↖

(2n, 2n,m) (2m, 2m,n) .

Note that the rest of the cases in Table 2 arise when
the full diagram of dessins and surgeries inside S is a
subdiagram of those we have just given.

Recall that all the types appearing in Theorem 6.1 are
nonarithmetic (see [Takeuchi 77a] to check the values of
n and m that are not involved in Table 2).

6.2 Multiply Quasiplatonic Arithmetic Surfaces

All possible surgeries involving arithmetic dessins can be
read in the inclusion diagrams among arithmetic triangle
groups in [Takeuchi 77b] or [Maclachlan and Rosenberger
92]. We find immediately:

Proposition 6.2. A multiply quasiplatonic surface of
arithmetic type carries no more than seven regular
dessins of different types.

Proof: It follows from the fact that the maximum possible
number of surgeries into a fixed arithmetic type of dessins
equals six. It can be attained only when the maximal
regular dessin has type (2, 3, 8) (see [Takeuchi 77b]).

An interesting question could be to check when this
upper bound really occurs. Or, more generally:

Suppose (l,m, n) is a maximal and arithmetic type of
regular dessins (or, equivalently, of triangle groups), and
let k be the number of different surgeries into dessins
of type (l,m, n). Let S be a surface carrying a regular
dessin MD of type (l,m, n): Then the number of regular
dessins of different types that may be found inside S is
at most k+1, the rest of dessins being preimages of MD
under different surgeries. Is this upper bound attained
in low genus for every choice of the maximal type?

The following theorem gives the answer for all the
cases with the only exception being, precisely, the case
of maximal dessins of type (2, 3, 8).

Theorem 6.3. Table 3 shows the lowest genus surfaces
that contain dessins of all possible types for each maximal
arithmetic type listed.

Some explanations are needed for a complete under-
standing of the table:

The first column makes reference to the label of the
diagrams of inclusions between arithmetic triangle groups
as they appear in [Takeuchi 77b]: We add a second label
in the cases when more than one maximal group occurs
in the same diagram, as in VI.1 or VI.2 (accordingly, the
case corresponding to maximal dessins of type (2, 3, 8)
would be III.2).

The fifth column (S) shows the number of different
surfaces of that minimal genus that carry all regular
dessins. The total number of different surfaces that
carry a regular dessin of that maximal type is found
in brackets. Finally, the last column shows some ad-
ditional information of the so-determined surfaces. The
simplest algebraic equations are obtained (some of them
already appeared in [Wolfart 00]), whereas in the re-
maining cases the quote refers to hyperellipticity. The
polynomial F appearing in case VII is given by F (x) =
x20 − 228x15 + 494x10 + 228x5 + 1.

Proof: We obtained the data in Table 3 in the follow-
ing way. First, fix a maximal type (l,m, n) and a genus
g. Then, using GAP [GAP 02], determine the mon-
odromy representation of all the regular dessins of that
type. This procedure can be done only up to some g,
the limit depending on the maximal type. The reason is
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Case MD Rest of dessins g S Equation

II (2, 4, 6)
(6, 6, 2), (6, 6, 3),

(4, 4, 3)
2 1 (1) y2 = x6 − 1

III.1 (2, 6, 8) (6, 6, 4), (8, 8, 3) 6 1 (2) Non hyp.

IV (2, 3, 12)
(3, 4, 12), (3, 3, 6),
(6, 6, 6), (2, 6, 12),

(12, 12, 3)
13 1 (1) Non hyp.

V (2, 4, 12)
(12, 12, 2), (12, 12, 6),

(4, 4, 6)
5 1 (1) y2 = x12 − 1

VI.1 (2, 4, 5) (5, 5, 2), (4, 4, 5) 4 1 (1)

∑5
i=1 xn

i = 0,
n = 1, 2, 3

VI.2 (2, 4, 10)
(4, 4, 5), (10, 10, 2),

(10, 10, 5)
4 1 (1) y2 = x10 − 1

VII (2, 5, 6) (5, 5, 3) 9 2 (2)
y2 = F (x)
Non hyp.

VIII (2, 3, 10)
(3, 3, 5), (5, 5, 5),

(2, 5, 10)
6 1 (1) Non hyp.

X.1 (2, 4, 7) (7, 7, 2) 19 1 (1) Non hyp.

X.2 (2, 3, 7)
(7, 7, 2), (3, 3, 7),

(7, 7, 7)
1009 1 Non hyp.

X.3 (2, 3, 14)
(3, 3, 7), (7, 7, 7),

(2, 7, 14)
15 1 (1) Non hyp.

XI.1 (2, 3, 9) (3, 3, 9), (9, 9, 9) 10 1 (1) Non hyp.

XI.2 (2, 3, 18)
(3, 3, 9), (9, 9, 9),

(2, 9, 18), (3, 6, 18)
37 1 (2) Non hyp.

XII (2, 4, 18)
(18, 18, 2), (18, 18, 9),

(4, 4, 9)
8 1 (1) y2 = x18 − 1

XIII (2, 3, 16)
(3, 3, 8), (8, 8, 8),

(2, 8, 16), (16, 16, 4)
21 2 (2)

Non hyp.
Non hyp.

XIV (2, 5, 20) (5, 5, 10) 31 1 (1) Non hyp.

XV (2, 3, 24)
(3, 8, 24), (3, 3, 12),

(12, 12, 12), (2, 12, 24),
(24, 24, 6)

37 2 (3)
Non hyp.
Non hyp.

XVI (2, 5, 30) (5, 5, 15) 81 2 (2)
Non hyp.
Non hyp.

XVII (2, 3, 30)
(3, 10, 30), (3, 3, 15),

(15, 15, 15), (2, 15, 30)
121 1 (1) Non hyp.

XVIII (2, 5, 8) (5, 5, 4) 22 1 (1) Non hyp.

TABLE 3. The multiply quasiplatonic surfaces of arithmetic type that contain all the regular dessins possible (lowest genus).

that we have to run through all existing groups of order
s = 2g−2

1−1/l−1/m−1/n (which would be the number of edges
of the dessin, or equivalently the index of a torsion-free
group of genus g inside ∆(l,m, n) if such a group exists).
Thus, we will eventually run out from the range of orders
covered by the existing libraries of finite groups.

Last, apply all possible surgery tests to the regular
dessins so obtained, checking if we have found for genus
g a regular dessin that is in the image of all the possible
surgeries into the class of (l,m, n) dessins.

By this procedure we solve all cases except X.2 (as
we soon see, we would need to deal with permutations

of size 84672—too high for the libraries of small groups
in GAP!). This is, in fact, a very interesting case, since
it corresponds to Hurwitz curves, namely Riemann sur-
faces that have the maximal possible number of auto-
morphisms 84(g − 1). Fortunately, Hurwitz groups have
been widely studied (see, for instance, [Conder 87]); this
allows us to study case X.2 from a different point of view.
According to Conder, we can argue as follows:

Suppose that S is a surface of type X.2, that is S is a
Hurwitz curve that also carries regular dessins of types
(7, 7, 7), (3, 3, 7), and (7, 7, 2). It follows that the sur-
face S uniformized by Γ is of type X.2 if and only if Γ
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is contained in the core in ∆(2, 3, 7) of the three trian-
gle subgroups ∆(7, 7, 2), ∆(7, 7, 7), and ∆(3, 3, 7). The
core of the first one is H1, the unique normal subgroup
of ∆(2, 3, 7) of index 504 (which has ∆(2, 3, 7)/H1 �
PSL(2, 8)), while the cores of the other two agree with
H2, the unique normal subgroup of ∆(2, 3, 7) of index
168 (with quotient ∆(2, 3, 7)/H2 � PSL(2, 7)). Thus, Γ
is contained in H = H1 ∩ H2, which is a normal sub-
group of index 84672. It follows that ∆(2, 3, 7)/Γ must
have PSL(2, 7) × PSL(2, 8) among its quotients, so ac-
cording to [Conder 87], the order of ∆(2, 3, 7)/Γ must be
divisible by 84672, and hence the genus g has to be of
the form g = 1008m + 1 for some m.

The unique Hurwitz curve of genus 1009 is actually
the type of surface we are looking for in X.2, since its
uniformizing group is precisely H (again see [Conder 87]).

As explained in the proof above, the monodromy ho-
momorphisms of the maximal regular dessins of the table
were computed explicitly (with the obvious exception of
case X.2): For more details, check the author’s web page
[Girondo 03]. The explicit form of these homomorphisms,
which is not shown here for obvious reasons of space, was
used to determine if the corresponding curve is or is not
hyperelliptic. In the hyperelliptic cases, the equation can
be easily obtained from the combinatorial data, as in II,
VI.2, XII, and one of the surfaces that solve case VII.
This latter has a different geometric meaning: The roots
of the polynomial F (x) (hence the projection to the Rie-
mann sphere of the Weierstrass points) are exactly the
centers of the faces of the icosahedral.

We can also recognize Bring’s curve as that one ap-
pearing in case VI.1.

As for the remaining case, III.2, corresponding to sur-
faces with the largest number (7) of different regular
dessins, we only find the following:

Proposition 6.4. Let S be a quasiplatonic surface with
a maximal regular dessin MD of type (2, 3, 8), such
that MD is a surgery image of regular dessins of types
(8, 8, 3), (3, 3, 4), (4, 4, 4), (2, 4, 8), (8, 8, 2), and (8, 8, 4).
Then the genus g of S is at least 51. More precisely,
g = 10k + 1, where k ≥ 5.

Proof: The expression g = 10k + 1 is a necessary conse-
quence of the existence of all those dessins. Nevertheless,
we find that for 1 ≤ k ≤ 4, there exists no quasiplatonic
surface of type (2, 3, 8). The computations, similar to
those used in the proof of Theorem 6.3, were done us-

ing GAP ([GAP 02]). It should be mentioned that the
higher genus studied (g = 41) needed a run-through of
the 241004 different finite groups that exist of order 1920.
The next case (g = 51) corresponds to groups of order
2400, larger than the maximum order currently available
in the finite group libraries.
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Ernesto Girondo, Depto. de Matemáticas, U. Autónoma de Madrid, C. Universitaria de Cantoblanco. Madrid 28049, Spain
(ernesto.girondo@uam.es)

Received February 4, 2003; accepted in revised form October 5, 2003.


