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In this work, we propose two new methods devoted to provide a
large list of new polynomials with high degree and small Mahler
measure. First, by statistical considerations, we augment Moss-
inghoff’s list of polynomials with degree at most 180, and then
we give a new list of such polynomials of degree up to 300.
The second idea is to perturb polynomials of Mossinghoff’s list,
and for higher degrees, of this new list, and to use them as ini-
tial polynomials for a minimization method, which converges to
new polynomials with lower Mahler measure.

1. INTRODUCTION

Recall that if

P (x) =
n∑

k=0

akxk, ak ∈ C and an �= 0,

the Mahler measure of P (x) is defined to be

M(P ) = |an|
n∏

k=1

max(1, |αk|),

where the α are the roots of P . Lehmer’s problem is to
know if, for any positive real number ε, there exists a
monic polynomial with integer coefficients such that its
Mahler measure lies between 1 and 1 + ε.

M. J. Mossinghoff gave a list of noncyclotomic and
irreducible polynomials, with Mahler measure less than
1.3, and with degree at most 180. His list was enriched
later by P. Lisonek. Mossinghoff’s algorithms consist in
testing adjusted cyclotomic products, sparse polynomi-
als, and all polynomials of a fixed degree with coefficients
in {−1, 0,+1}.

A careful examination of known polynomials moti-
vated us to search for a relation between them, and we
finally thought that interesting polynomials of degree n

could be searched in sets of polynomials given by a multi-
normal distribution, with mean polynomial xn + 1.
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In the following section, we recall some facts about
multinormal distributions, and we explain how we simu-
lated random drawings of such polynomials.

2. A STATISTICAL METHOD

Aiming to produce a large number of polynomials with
small Mahler measure, it is obviously crucial to have an
efficient criterion to preselect polynomials whose Mahler
measure is to be computed. Considering already known
polynomials available, for example, in Mossinghoff’s list,
it appears that for each degree n, good candidates are
polynomials that are “close” to xn +1, in a sense we will
specify below.

Recall that the vector X = (x1, ..., xn) has the mul-
tivariate normal distribution (or multinormal distribu-
tion), written N(µ, V ), if its joint density function is

fXT =
1√

(2π)n det(V )
exp

( − 1
2
(x − µ)T V −1(x − µ)

)
,

where V is a positive definite symmetric matrix.
The main result is that if X ∼ N(µ, V ), then E[X] = µ

(i.e., E[Xi] = µi for all i). Moreover, V = Cov[Xi,Xj ]
(see [Cartea 99]). According to A. Cartea ([Cartea 99]),
another meaningful way of introducing multivariate nor-
mality is the following: The vector X = (X1, ...,Xn)T

of random variables is said to have the multinormal dis-
tribution if for all aT = (a1, ...,an) ∈ R

n, one has that
xT a = a1X1 + ... + anXn has a univariate normal distri-
bution.

The covariance matrix V used in our searches
was constructed using heuristic considerations. We
found that using a value of 0.22 for the variance
of each Xi produces good results. Full covariance
matrices used in some of our searches are available
on our web site: http://www.mmas.univ-metz.fr/∼
jmse/Recherche/TheodesNbres/Mahler.

Recall also that if the polynomial P is not reciprocal,
then M(P ) ≥ θ0, where θ0 = 1.324717 . . . is the smallest
Pisot number. Then, we obviously deal with reciprocal
polynomials. Generating monic reciprocal polynomials of
degree 2d subject to a multinormal distribution amounts
to generating d-vectors subject to such a distribution.
Then, we prepared a sampling of polynomials consistent
with previous wishes. At first, we suppressed cyclotomic
factors in each polynomial. If the resulting polynomial
was irreducible, we computed its Mahler measure, other-
wise we examined each of its factors.

This method allowed us to add new polynomi-
als to Mossinghof’s list, and also to produce many

new polynomials up to degree 300. A list of these
new polynomials is available from our web site in the
file NewPolyUpDeg300.html.

A surprising result is that our statistical method pro-
duces exclusively polynomials whose Mahler measures lie
in the neighbourhood of the known limit points of Mahler
measures.

Recall that the Mahler measure of a two-variables
polynomial P (x, y) is defined by

M(P (x, y)) = exp
( ∫ 1

0

∫ 1

0

log |P (
e(s), e(t)

)|dsdt
)
,

where e(s) = exp(2πis).
The smallest known limit points of Mahler measures

arise from polynomials in two variables and are recalled
below:

M(x2(y2 − 1) + x(y3 − 1) + y(y2 − 1)) = 1.255433 . . .

M(x2 + x(y2 + y + 1) + y2) = 1.285734 . . .

M(x2y(y + 1) + x(y4 − y2 + 1)

+ y2(y + 1)) = 1.309098 . . .

M(x2(y3 − 1) + x(y5 − 1) + y2(y3 − 1)) = 1.315692 . . . .

For example, values of Mahler measures we found for
polynomials obtained at degree 242 are significant:

1.285717550280 x242 − x179 + x121 − x63 + 1

1.286006968000 x242 + x135 − x121 + x107 + 1

1.286084277301 x242 + x137 − x121 + x105 + 1

1.286308220628 x242 + x182 − x121 + x60 + 1

1.286410933712 x242 − x177 − x121 − x65 + 1

1.309612811496 x242 − x224 + x157 − x121 + x85

− x18 + 1

1.316822330028 x242 − x234 + x226 + x137 − x129

+ x121 − x113 + x105 + x16

− x8 + 1.

We choose to give here only polynomials with small
length, but numerous polynomials (with large length and
small Mahler measure) can be found on our web site. For
this specific degree, we did not find any polynomial whose
Mahler measure lies in the neighbourhood of 1.255433 . . .,
but such polynomials were found at other degrees, for
example, at degree 202:

1.254787222031 x202 − x174 + x129 − x101 + x73

− x28 + 1

1.255701490987 x202 + x185 − x118 − x101 − x84

+ x17 + 1.
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M(P) < 1.27 1.27 ≤ M(P) ≤ 1.29 1.29 < M(P) ≤ 1.312 1.312 < M(P)
11 251 34 38

TABLE 1.

Degree 174 Degree 176 Degree 178 Degree 180
1 2 7 9

TABLE 2.

Moreover, to make the best possible use of our random
drawings, our program is also endowed with a subroutine
which examines each random polynomial whose Mahler
measure is small: If this polynomial is irreducible, it is
retained, while its prime factors are examined if it is not.
This method provided new polynomials of high degrees,
small Mahler measure, large length, and especially large
coefficients (please consult our web site). In the follow-
ing lines, we give two examples. Since the polynomials
we deal with are reciprocal, we merely give half the co-
efficients of these polynomials:

190 1.285184607031 1 -1 1 -1 0 1
-2 2 -2 1 1 -2 3 -3 2 0 -2 3
-4 3 -1 -1 3 -4 4 -2 0 2 -4
4 -3 1 1 -3 4 -3 2 0 -2 3
-3 2 -1 -1 2 -2 2 -1 0 1 -1 1
-1 0 0 0 0 0 0 0 1 -1 1 -1
0 1 -2 3 -3 2 0 -2 4 -5 4 -2
-1 4 -6 6 -4 1 3 -6 7 -6 3
1 -5 7 -7 5 -1 -3 6 -7

250 1.284974533200 1 1 1 1 0 -1 -2 -2
-2 -1 1 2 3 3 2 0 -2 -3 -4 -3 -1
1 3 4 4 2 0 -2 -4 -4 -3 -1 1 3 4
3 2 0 -2 -3 -3 -2 -1 1 2 2 2 1 0
-1 -1 -1 -1 0 0 0 0 0 0 0 1 1 1
1 0 -1 -2 -2 -2 -1 1 2 3 3 2 0
-2 -4 -5 -4 -2 1 4 6 6 4 1 -3 -6 -
7 -6 -3 1 5 7 7 5 1 -3 -6 -7 -6
-3 1 4 6 6 4 1 -2 -4 -5 -4 -2 0 2
3 3 2 1 0 -1 -1 -1 -1 -1 .

Please note the large coefficients of these polynomials.
In Table 1, we show the number of polynomials P

found in four specific intervals.
In Table 2, we summarize (by degree) the number of

new polynomials of degree less than 180 lacking in Moss-
inghoff’s list.

In the third section, we look for polynomials with
small Mahler measure by using a completely different
method based on a minimization algorithm.

3. A MINIMIZATION METHOD

In this section, we will present a method devoted to pro-
vide new polynomials with small Mahler measures by us-
ing a minimization algorithm. The aim of this algorithm
is to give sequences of polynomials whose Mahler mea-
sures decrease. Given an initial reciprocal polynomial,
we let each coefficient (one monomial and its reciprocal
monomial change at the same time) ai grow from ai − 1
to ai+1 (from ai−2 to ai+2 for small degrees, i.e., up to
degree 40). More precisely, for a given starting polyno-
mial P of degree 2n, we examine polynomials P ±xn and
P ± (xn−i +xi) for 0 < i < n, and similarly for the small
degree case where adjusting by 2 is allowed. We test
each obtained polynomial, and we keep the polynomial
which has the smallest measure (see examples below).
This polynomial is then the new initial polynomial, and
we stop the process when this initial polynomial does not
change upon applying the algorithm to it.

This method is fast and gives interesting results. Let
us give some examples. For reasons of conciseness, we
reproduce here only tests for some small degrees, but we
tested this algorithm up to degree 300. In all cases, we
noted that very few loops are necessary. Let us run the
program at degree 10:

Initial polynomial:
x10 + x9 + x8 + x7 − x6 − x5 − x4 + x3 + x2 + x + 1
Mahler measure: 1.960942
First output
x10 + x9 − x8 + x7 − x6 − x5 − x4 + x3 − x2 + x + 1
Mahler measure: 1.926067
Second output
x10 + x9 + x7 − x6 − x5 − x4 + x3 + x + 1
Mahler measure: 1.883774
Third output
x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1
Mahler measure: 1.176281

Note that other initial polynomials suit as well. For
the same degree, we get, for example,
the sequence:
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Initial polynomial:
x10 +x9 +x8 +x7−3∗x6−3∗x5−3∗x4 +x3 +x2 +x+1
Mahler measure: 3.626141
First output
x10 +x9 +x8−x7−3∗x6−3∗x5−3∗x4−x3 +x2 +x+1
Mahler measure: 2.178217
Second output
x10 + x9 + x8 − x7 − x6 − 3 ∗ x5 − x4 − x3 + x2 + x + 1
Mahler measure: 1.867224
Third output
x10 + x9 + x8 − x7 − x6 − x5 − x4 − x3 + x2 + x + 1
Mahler measure: 1.731382
Fourth output
x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1
Mahler measure: 1.176281

Another example with a higher degree initial polyno-
mial also gives an idea of the efficiency of the method.

Initial polynomial:
x38 +x37 +x36 +x35−x32−x31−x30−x29 +x26 +x25 +
x24 +x23 −x20 +x19 −x18 +x15 +x14 +x13 +x12 −x9 −
x8 − x7 − x6 + x3 + x2 + x + 1
Mahler measure: 2.111413
First output
x38 +x36 +x35−x32−x31−x30−x29 +x26 +x25 +x24 +
x23 − x20 + x19 − x18 + x15 + x14 + x13 + x12 − x9 − x8 −
x7 − x6 + x3 + x2 + 1
Mahler measure: 2.040529
Second output
x38 +x36 +x35−x32−x31−x30−x29 +x26 +x25 +x24 +
x23 +x22−x20 +x19−x18 +x16 +x15 +x14 +x13 +x12−
x9 − x8 − x7 − x6 + x3 + x2 + 1
Mahler measure: 2.002712
Third output
x38 +x36 +x35−x32−x31−x30−x29 +x26 +x25 +x24 +
x23 +x22−x20−x19−x18 +x16 +x15 +x14 +x13 +x12−
x9 − x8 − x7 − x6 + x3 + x2 + 1
Mahler measure: 1.816100
Fourth output
x38 +x36 +x35−x32−x31−x30−x29 +x26 +x25 +x24 +
x23−x22−x20−x19−x18−x16 +x15 +x14 +x13 +x12−
x9 − x8 − x7 − x6 + x3 + x2 + 1
Mahler measure: 1.686410
Fifth output
x38 +x36 +x35−x32−x31−x30−x29 +x26 +x25 +x24 +
x23 − x20 − x19 − x18 + x15 + x14 + x13 + x12 − x9 − x8 −
x7 − x6 + x3 + x2 + 1
Mahler measure: 1.391285

Sixth output
x38 + x37 + x36 + x35 − x32 − x31 − x30 − x29 + x26 +
x25 + x24 + x23 − x20 − x19 − x18 + x15 + x14 + x13 +
x12 − x9 − x8 − x7 − x6 + x3 + x2 + x + 1
Mahler measure: 1.268142

Of course, it is interesting to choose an initial polyno-
mial that has already a small Mahler measure. For ex-
ample, choosing x188 + x165 − x94 + x23 + 1 with Mahler
measure 1.286573 . . . yields x188 + x165 + x94 + x23 + 1,
with Mahler measure 1.283092 . . . . However, the mini-
mization method gives local minima, but not necessarily
absolute minima, because the process stops every time a
local minimum is found. Consequently, if the initial poly-
nomial has a very small Mahler measure, this polynomial
may be a minimum for the method. Therefore, we chose
to take polynomials appearing in Mossinghoff’s list and
to perturb them to get good initial polynomials, and for
higher degrees, we perturbed polynomials obtained with
the statistical method of Section 2. More precisely, for
producing starting polynomials, we took polynomials of
Mossinghoff’s list, or polynomials found with the statis-
tical method, and we chose to change only the central
monomial in the following way: If the coefficient of the
central monomial is not 0, we replace it by zero, while
we replace it by 1 if it is equal to 0.

Very promising for small degrees, the minimization
method is at least less efficient than the statistical
method. Actually, the ratio of the number of new poly-
nomials found with the minimization method (for high
degrees) compared with the number of new polynomials
found with the statistical method is 1 to 10. Moreover,
the 19 new polynomials (with degree less than 180) lack-
ing in Mossinghoff’s list were found with the statistical
method.

Finally, an interesting plan seems to test other min-
imization algorithms in order to increase the efficiency
and speed of the minimization approach.

4. CONCLUSION AND PROSPECTS

To sum up, these two methods seem to be interesting ap-
proaches to discovering new polynomials with high degree
and small Mahler measure, with a preference for the sta-
tistical method. In the near future, we plan to implement
an automated version of the statistical method, which
could perform indefinitely random drawings of polynomi-
als and enrich the list each time a new interesting polyno-
mial is found. We also plan to test various minimization
algorithms to improve the method proposed in Section
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3. Finally, we undertook to study properties of polyno-
mials with small Mahler measure from the angle of the
localization of roots of such polynomials. That will be
the theme of future work.
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