
On the Last Geometric Statement of Jacobi
R. Sinclair

CONTENTS

1. Jacobi’s Statement
2. Computing Caustics on Ellipsoids of Revolution
3. Computing Caustics on Triaxial Ellipsoids
4. Conclusion
Acknowledgments
References

2000 AMS Subject Classification: Primary 53C20; Secondary 53-04

Keywords: Conjugate locus, caustic, ellipsoid

Based upon numerical experimentation, we claim that all caus-
tics from any nonumbilical (nonpolar for ellipsoids of revolution)
point p on any ellipsoid embedded in R

3 (except the 2-sphere)
have exactly four cusps, all of which are on lines of curvature
(meridians and parallels for ellipsoids of revolution) intersecting
either p (even caustics) or −p (odd caustics). This is an extension
of a statement usually attributed to Jacobi.

1. JACOBI’S STATEMENT

A basic question of differential geometry is when a given
geodesic actually is a curve of shortest distance. For ex-
ample, a geodesic curve γ through a point p may inter-
sect another infinitesimally close geodesic through p in
another point q. γ is the curve of shortest distance be-
tween p and any point on γ between p and q, but it is not
the curve of shortest distance between p and any point
on γ after q. In such a case, p and q are said to be con-
jugate. See Chapter III of [Sakai 96] and also [Kobayashi
67] for a more detailed introduction. The locus of all
points conjugate to p is called the conjugate locus or
(first) caustic from p. One can imagine that infinitesi-
mally close geodesics will generally intersect more than
once. The loci of the points of second intersection are
known as the second caustic from the point p and so on.

What is known as Jacobi’s statement concerns the
caustics from points on the surface of an ellipsoid.

Jacobi used the conjugate locus from a point on ellip-
soids of revolution as an example in his sixth Lecture on
Dynamics [Jacobi 84], describing it as roughly like the
evolute of the ellipse (which has four cusps), and includ-
ing a drawing with the four cusps labeled A to D. In
the twenty-eighth lecture of the same series, in which he
integrated the geodesic flow on the triaxial ellipsoid by
separation of variables, no mention was made of caustics.
The result concerning integrability was and is of great
importance in geometry and dynamics. See [Knörrer 80]
for further historical notes and a clear description of the
geometry of the geodesic flow.

c© A K Peters, Ltd.
1058-6458/2003 $ 0.50 per page

Experimental Mathematics 12:4, page 477



478 Experimental Mathematics, Vol. 12 (2003), No. 4

A copy of an unfinished paper of Jacobi’s, along with
a lengthy addendum written by A. Wangerin, is included
in his Collected Works [Jacobi and Wangerin 91]. This
paper contains the first-order approximation (in eccen-
tricity) to a caustic from a point on an oblate spheroid,
explicitly mentioning that the earth has such a shape.
The first caustic is found to be a 4-cusped hypocycloid
to this order.

Von Braunmühl followed up Jacobi’s work with two
papers. The first, [von Braunmühl 79], treats caustics
from points on various surfaces of revolution. As far as
ellipsoids of revolution are concerned, there is a mostly
qualitative discussion leading to the conclusion that the
conjugate locus has four cusps, and some figures. He
points out that these cusps appear on the meridian op-
posite the starting point, and the parallel of the same
radius as the parallel which intersects the starting point
(there are two of these, labeled r0 and r′0, in Figure 2 of
his paper). In a paper which also addresses issues raised
in Jacobi’s lectures, von Mangoldt ([von Mangoldt 81],
in particular Section IV and the footnote at the bottom
of page 48) provides a clarification of von Braunmühl’s
argument concerning the location of two of the cusps on
the parallel r′0 just referred to.

Figure 2 of von Braunmühl’s paper [von Braunmühl
79] appears again in textbooks of the following century
(page 143 of [Struik 61], page 270 of [do Carmo 92], and
page 296 of [Giaquinta and Hildebrandt 96], which re-
produces all five figures, but with some labels removed).
One of the motivations of the present work is to provide
computed illustrations of caustics, in the hope that these
will be both more accurate and more informative than
their antique counterparts.

Von Braunmühl’s second paper on this subject [von
Braunmühl 82] is concerned with triaxial ellipsoids, con-
taining explicit formulæ for the conjugate locus in terms
of hyperelliptic functions (Section 9 of that paper). Fig-
ure 2 of the paper illustrates the conjugate locus as hav-
ing exactly four cusps. In Section 6 of the paper, it is
shown that the conjugate locus meets the two lines of
curvature intersecting the antipode of the starting point
(these lines of curvature are labeled µ′

0 and ν′
0 in Fig-

ure 2 of the paper) tangentially. For the definition of a
line of curvature, see the remarks to Proposition 3.5.4 in
[Klingenberg 82].

More recent results concerning conjugate loci from
points on ellipsoids are to be found in Section 3.5 (in
particular Lemma 3.5.13) of [Klingenberg 82]. Note in
particular that the conjugate locus of an umbilic point
on an ellipsoid is its antipodal umbilic point (Theorem

3.5.16). See also [Margerin 91], where it is shown that
conjugate loci do not need to be closed. This last result
makes Jacobi’s statement even more remarkable.

Now let us return to the question of when a given
geodesic actually is a curve of shortest distance. The
cut locus from a point p on a surface S is the closure of
the set of points that can be connected to p by at least
two distinct shortest paths in S [Wolter 79]. On a two-
dimensional surface, the cut locus from a point p defines a
tree-shaped boundary, beyond which any geodesic curve
emanating from p is no longer minimizing. The concept
of the cut locus was introduced under the name of “ligne
de partage” in Section 2 of [Poincaré 05], where one can
also find an early, clear discussion of caustics from points
on convex surfaces, and their relation to the cut locus.
For a modern definition of the cut locus, see Section 4 of
Chapter III of [Sakai 96].

Recent experimental work [Itoh and Sinclair 02] in-
dicates that the cut loci from points on the surfaces of
triaxial ellipsoids consist of only one topological segment,
and are subarcs of the line of curvature passing through
the antipode of the starting point. Since the endpoints of
the cut locus are conjugate points at cusps of the conju-
gate locus, as pointed out in [Poincaré 05], this conjecture
confirms what von Braunmühl wrote (as detailed above).

M. Berger, in a historical review of Riemannian Ge-
ometry (Section TOP 4 of [Berger 00]), writes

... But this latter assumption depends on the
scandalously unproved Jacobi “statement”: the
conjugate locus of a non-umbilical point m of
an ellipsoid has exactly four cusps.

Further, in a talk given by V. I. Arnold at the Fields
Institute in 1997 [Arnold 99] (and see also Chapter 3 of
[Arnold 94]), he says

At the end of his lecture on these caustics Jacobi
remarked that for the simplest perturbation of
the sphere (making it an ellipsoid) the number
of cusps is 4 ... He even stated that in the case
of an ellipsoid a caustic has always four cusps.
I do not know whether this Jacobi statement is
true or not. It is a challenge both for the alge-
braic geometry and for the scientific computing
... However this real problem is too difficult for
the algebraic geometers ... and thus the “Last
Geometric Jacobi Statement” is rather a con-
jecture than a theorem ... It is known that the
first caustic has at least four cusps (for a convex
surface).
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We have taken this statement as our starting point, and
numerically investigated caustics from points on general
ellipsoids.

For a review of the systematic investigation of caustics
in a different context, see [Duistermaat 74, Hanyga 97].
It is also of interest to note that the caustic which is the
envelope of the normals to the three-dimensional ellipsoid
in R

4 [Joets and Ribotta 99] has four closed curves of
hyperbolic umbilics.

Caustics are of relevance to many problems in physics
[Ehlers and Newman 00] and geophysics [Gjøystdal et al.
02]. They are difficult to compute, particularly in an Eu-
lerian setting [Benamou and Solliec 00]. In particular, we
want to be able to compute second and higher caustics,
so we must use a Lagrangian or phase-space approach
[Lambare et al. 96, Sinclair and Tanaka 02, Fomel and
Sethian 02, Engquist et al. 02]. Here, we will make use of
elementary differential geometry to construct algorithms
specific to our needs.

2. COMPUTING CAUSTICS ON ELLIPSOIDS
OF REVOLUTION

Let

(u, v) �→ (r(v) cos u, r(v) sin u, v) (2–1)

be a parametrization of a class of surfaces of revolution
(including all ellipsoids of revolution) embedded in R

3.
Let (u(s), v(s)) be an arc-length parametrization of a

geodesic. We wish to compute a Taylor expansion of u

and v in terms of s, with u(0) = u0 and v(0) = v0. Since
geodesics on ellipsoids of revolution generally oscillate
between parallels, we introduce a further coordinate d ∈
{−1, 1}, which indicates the direction of the geodesic:
d = 1 indicates that v is increasing with s, d = −1 that
v is decreasing with s.

Our algorithm makes use of Clairaut’s Theorem (The-
orem 6.4 of [Bolsinov and Fomenko 99] and Theorem
3.5.23 in [Klingenberg 82]). Recall that geodesic curves
on two-dimensional surfaces of revolution are the paths of
frictionless test particles moving free from external forces
except the one which is necessary to constrain them to
the surface. This force is (i) normal to the surface and
(ii) its projection onto the plane perpendicular to the sur-
face’s axis of rotational symmetry is radial (centripetal)
or null. These two properties conserve, respectively, (i)
the speed and therefore also energy of the particles, and
(ii) the component of angular momentum in the direc-
tion of the surface’s axis of rotational symmetry. Let

c be Clairaut’s constant, a dimensionless quantity pro-
portional to the conserved component of angular mo-
mentum. The 4-tuple (u0, v0, d, c) uniquely determines
a geodesic curve.

Writing

r(v) = r0 + r1(v − v0) +
r2

2
(v − v0)2

+
r3

6
(v − v0)3 + O

(
(v − v0)4

)
, (2–2)

we find

v(s) = v0 +

√
r0 2 − c2

r1 2 + 1
d s

r0

− r1
(
r0 3r2 − c2r2 r0 − c2r1 2 − c2

)
s2

2 (r1 2 + 1)2 r0 3
+ O(s3)

u(s) = u0 +
cs

r0 2

− c

√
r0 2 − c2

r1 2 + 1
r1 d s2

r0 4
+ O(s3). (2–3)

These quadratic polynomial approximations are the basis
of our algorithm.

We approximate a surface of type (2–1) by piecewise
cubic polynomials (hence Equation (2–2)), and geodesics
by piecewise quadratic polynomials. We propagate u and
v for some small distance δs such that the error is less
than some given tolerance, then evaluate u′

0 = u(δs),
v′
0 = v(δs) and set d′ to ±1 depending upon the sign of

v̇(δs). (u′
0, v

′
0, d

′, c) are then used for the next step.
The method we will use to find caustics is based upon

Jacobi fields. The relationship between Jacobi fields and
conjugate points is well explained in Section 7 of Chap-
ter 27 of [Postnikov 01], and Section 2.3 of Chapter 5 of
[Giaquinta and Hildebrandt 96]. We make use of one of
many equivalent definitions (see Section 2 of [Kobayashi
67], from which we now paraphrase): The points γ(t1)
and γ(t2) of a geodesic γ are said to be conjugate if
there is a geodesic variation γh (a one-parameter fam-
ily of geodesics γh = γh(t), t1 ≤ t ≤ t2 and −ε < h < ε,
such that γ0 = γ) which induces an infinitesimal varia-
tion vanishing at t = t1 and t = t2. See also the dis-
cussion of focal points in Section 4 of Chapter 10 of [do
Carmo 92], and Complement 2.1.13 to Theorem 2.1.12
in [Klingenberg 82]. We apply automatic differentiation
with respect to c to the code which computes Equations
(2–3). This provides us with piecewise quadratic polyno-
mial approximations to du/dc and dv/dc, as polynomials
in s. We can compute the roots of these, and if both
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FIGURE 1. The first caustic from a point at latitude
36◦ 47′ on the Australian National Spheroid, an oblate
ellipsoid, for which the eccentricity is eearth ≈ 0.08182.
All measurements are in kilometres. The crosses are nu-
merical data. The curve is the first order approximation.

are found to go to zero at the same value (within a cer-
tain tolerance) of s, then that is judged to be a point of
intersection of two infinitesimally close geodesics.

The algorithm need only count these, as s increases,
until a point on the desired caustic is found, or s exceeds
some maximum value.

2.1 First-Order Approximations for Small Eccentricity

Here we will use the geophysical motivation given in
[Longuet-Higgins 90] to provide us with an example. One
is interested in ascertaining the pattern of rays in the
neighbourhood of the antipode of a source point on a
slightly oblate spheroid (the earth), since this will give
one some (clearly extremely approximate) information
concerning long-range sound propagation in the ocean.

First-order approximations to the first caustic are
given both in [Jacobi and Wangerin 91] and [Longuet-
Higgins 90]. The general shape is that of a 4-cusped
hypocycloid. The earth is a good example to use since
it is indeed only slightly eccentric. Using the Australian
National Spheroid geometrical constants (from Table 3c
of [Featherstone 96]), we have

eearth ≈ 0.08182018.

Following Wangerin’s presentation in which Q and Z
are (to first order) distances from the antipode along a
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0.1 Q

–0.08 –0.06 –0.04 –0.02 0.02 0.04 0.06 0.08
Z

FIGURE 2. A comparison of numerical data (crosses)
with the first-order approximation (solid curve) to a first
caustic on an oblate spheroid of eccentricity es ≈ 0.3049.

meridian and a parallel, respectively, we find that the
first caustic from a point at latitude 36.78◦ is given by

Q2/3 + Z2/3 = C2/3

with
C = 42.93km.

See Figure 1. We have also checked the case of latitude
45◦, for which C ≈ 33km. This is in agreement with
[Longuet-Higgins 90]. These results confirm the utility of
the first-order approximations in naturally occurring sit-
uations, and also provide us with a first check of our soft-
ware. One would also wish to have some idea of the val-
ues of eccentricity for which these approximations break
down. We have therefore also investigated the ellipsoid
given by (

20
21

)2 (
x2 + y2

)
+ z2 = 1,

for which the eccentricity is

es =
√

41
21

≈ 0.3049

using the starting point(
21
25

, 0,
3
5

)
.

The numerical data and first-order approximation are
compared in Figure 2. Note that in this case the co-
ordinates Q and Z are with respect to tangents to the



Sinclair: On the Last Geometric Statement of Jacobi 481

FIGURE 3. Two views of the conjugate locus (first caustic) from a point on an oblate ellipsoid, one showing the geodesics
whose envelope is one arc of the caustic. The starting point is shown as a black cross.

FIGURE 4. The second and third caustics from a point on an oblate ellipsoid.

meridian and the parallel passing through the antipode
to the starting point, respectively. It would appear that
these approximations are still qualitatively correct for
such large eccentricities. What is important is that the
number of cusps is still clearly four.

2.2 Caustics on a Significantly Oblate Spheroid

Now take the oblate spheroid (an ellipsoid of revolution)
given by (

2
5

)2 (
x2 + y2

)
+ z2 = 1,

and the starting point

(
−2, 0,

3
5

)
.

The first three caustics are shown in Figures 3 and 4,
all of them having four cusps. The cusps of the caustics
are all on parallels or meridians intersecting the starting
point or its antipode. Self-intersections of the third caus-
tic are on the meridian intersecting the starting point.

One may be tempted to think that, particularly for
even caustics, the geodesic joining the starting point to
a cusp is a line of curvature. This is, however, not so,
except in obvious cases. This comment applies to all
ellipsoids.

2.3 Caustics on a Prolate Spheroid

Now take the prolate spheroid given by

4
(
x2 + y2

)
+ z2 = 1,

and the starting point(−2
5

, 0,
3
5

)
.

The various caustics are shown in Figures 5 and 6. The
cusps of the caustics are all on parallels or meridians
intersecting the starting point or its antipode. Self-
intersections of the second and third caustics are on the
meridian intersecting the starting point.

In all cases, the caustics have four cusps.

3. COMPUTING CAUSTICS ON
TRIAXIAL ELLIPSOIDS

We wish to capture caustics for a small number of rep-
resentative cases to an accuracy of only a few decimal
places. In the spirit of fast prototyping, we have therefore
chosen a robust but low-order algorithm. This algorithm
will be able to treat a wide class of surfaces embedded in
R

3, including all ellipsoids.
We will define the surface implicitly as the set of so-

lutions in R
3 of the equation

U(x, y, z) = 0, (3–1)
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FIGURE 5. Two views of the conjugate locus (first caustic) from a point on a prolate ellipsoid. The starting point is
shown as a black cross where it is in the foreground, and white where it is on the far side of the surface.

FIGURE 6. The second and third caustics from a point on a prolate ellipsoid.

where, of course, our object of interest in this paper is
the family of surfaces given by

U(x, y, z) =
x2

a2
+

y2

b2
+

z2

c2
− 1. (3–2)

Given a starting point �x0 on the surface, a starting
direction �v0 tangential to the surface, and a step length

�, we can compute a new position

�w0 = �x0 + �
�v0

‖�v0‖ (3–3)

and then (approximately) project it back on to the sur-
face using what is essentially one Newton step:

�x1 = �w0 − U(�w0)
∇U(�w0)

‖∇U(�w0)‖2
. (3–4)
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FIGURE 7. Frontal view of the conjugate locus (in black) from a symmetric point on a triaxial ellipsoid. The white curve
is the cut locus from the same point. The thin black curves are lines of curvature.

FIGURE 8. The first (black), second (grey), and third (white) caustics from a point on a triaxial ellipsoid. The starting
point is indicated by the small black cross on the left view. The thin black lines are lines of curvature.

We can also update the direction vector:

�v1 = �x1 − �x0. (3–5)

These equations are iterated a given number of times for
the same starting point but two (close) initial directions.
We then find intersections of these piecewise-linear ap-
proximations to the two close geodesics (x and x′) by
computing

{�xi − �x′
i} · ∇U(�xi) × �vi (3–6)

and looking for its zeros as one does for a Jacobi field,
which this simple algorithm is designed to mimic.

3.1 Two Examples of Triaxial Ellipsoids

For the first example, we make use of a modified version
of the software package Loki [Sinclair and Tanaka 02].

This version can compute cut loci from a restricted set
of starting points on triaxial ellipsoids.

We use the surface given by

25x2

64
+

100 y2

529
+

z2

4
= 1 (3–7)

with the starting point

p1 = (0.8644836896, 0, 1.682941970).

Figure 7 shows the conjugate locus, the cut locus, and
the various lines of curvature intersecting p1 or −p1. Note
that the cut locus is a subarc of a line of curvature, as
conjectured in [Itoh and Sinclair 02] (this is an indepen-
dent check of the results of that paper because here we
are using entirely different software to compute the cut
locus), and that the endpoints of the cut locus are cusps
of the conjugate locus.
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FIGURE 9. The fourth caustic from a point on a triaxial
ellipsoid. The starting point is indicated by a small black
cross. The thin dark lines are lines of curvature.

For the second example, we use the surface given by

25x2

64
+

100 y2

529
+

z2

9
= 1 (3–8)

with the starting point

p2 = (1.268661, 1.131879, 1.077939).

In Figure 8, we can see the first, second, and third
caustics. The fourth caustic is in Figure 9. What is
striking is the role played by the lines of curvature passing
through p2 or −p2. The cusps of the caustics meet these
lines tangentially (as von Braunmühl showed for the first
caustic), but not all of the self-intersections of the third
and fourth caustics are on one of these lines of curvature.

In all cases, the caustics have four cusps.

4. CONCLUSION

Our results appear to give one good reason for believing
that the statement

all caustics from non-umbilical points p on tri-
axial ellipsoids (or non-polar points p on el-
lipsoids of revolution) have exactly four cusps,
which are to be found on the lines of curvature
(or meridians and parallels) intersecting p (for
even caustics) or −p (for odd caustics), meeting
these lines tangentially

is true, where an nth caustic is called even if n is even,
and odd if n is odd. Whatever he might actually have
written, we feel that it remains appropriate to attribute
this claim to Jacobi.
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faces convexes.” Transactions of the American Mathe-
matical Society 6 (1905), 237–274.

[Postnikov 01] M. M. Postnikov. Geometry VI: Riemannian
Geometry, Encyclopaedia of Mathematical Sciences, Vol.
91. Berlin: Springer-Verlag, 2001.

[Sakai 96] T. Sakai. Riemannian Geometry, Translations of
Mathematical Monographs, Vol. 149. Providence, RI:
AMS, 1996.

[Sinclair and Tanaka 02] R. Sinclair and M. Tanaka. “Loki:
Software for Computing Cut Loci.” Experimental Math-
ematics 11:1 (2002), 1–25.

[Struik 61] D. J. Struik. Lectures on Classical Differential Ge-
ometry, Second edition. Reading, MA: Addison-Wesley,
1961.

[Wolter 79] F. -E. Wolter. “Distance Function and Cut Loci
on a Complete Riemannian Manifold.” Archiv der Math-
ematik 32 (1979), 92–96.

Robert Sinclair, Department of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia
(R.Sinclair@ms.unimelb.edu.au)

Received January 23, 2003; accepted in revised form September 23, 2003.


