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We organize the nilpotent orbits in the exceptional complex Lie
algebras into series and show that within each series the dimen-
sion of the orbit is a linear function of the natural parameter
a = 1, 2, 4, 8, respectively for f4, e6, e7, e8. We observe similar
regularities for the centralizers of nilpotent elements in a series
and grade components in the associated grading of the ambient
Lie algebra. More strikingly, we observe that for a ≥ 2 the num-
bers of Fq-rational points on the nilpotent orbits of a given series
are given by polynomials that have uniform expressions in terms
of a. This even remains true for the degrees of the unipotent
characters associated to these series through the Springer corre-
spondence. We make similar observations for the series arising
from the other rows of Freudenthal’s magic chart and make some
observations about the general organization of nilpotent orbits,
including the description of and dimension formulas for several
universal nilpotent orbits (universal in the sense that they occur
in almost every simple Lie algebra).

1. INTRODUCTION

1.1 Main Results

In this paper we explore consequences of the Tits-
Freudenthal construction and its variant, the triality
model, for nilpotent orbits in the exceptional complex
simple Lie algebras. Both models produce a Lie algebra
g(A, B) from a pair of real normed algebras A, B. When
B = O, one obtains the exceptional Lie algebras f4, e6, e7,
and e8, parametrized by the dimension a = 1, 2, 4, 8 of
A. In [Landsberg and Manivel 02a], the first two authors
used the triality model to explain rather mysterious for-
mulas obtained by Deligne for the dimensions of certain
series of representations of the exceptional Lie algebras.
In this paper, we show that the use of the parameter
a leads to several interesting observations for nilpotent
orbits in the exceptional Lie algebras.

Let us begin with any nilpotent orbit O in f4. Thanks
to the natural embeddings so8 ⊂ f4 ⊂ e6 ⊂ e7 ⊂ e8, we
obtain a series of orbits Oa in these Lie algebras. Their
weighted Dynkin diagrams can be obtained in the follow-
ing way: each series of orbits is defined by a weight of
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so8, which, through the triality model, defines a weight,
thus a weighted Dynkin diagram, for each exceptional
Lie algebra. This is how we proved and generalized the
dimension formulas of Deligne for series of representa-
tions whose highest weights came from so8 in [Landsberg
and Manivel 02a]. We prove, or check from the tables
compiled in [Carter 93], that

• the dimension of Oa is a linear function of a;

• the stabilizers of points in Oa have unipotent rad-
icals of dimension again linear in a, while their re-
ductive parts organize into simple series;

• the closure of Oa can be desingularized by a homo-
geneous vector bundle, whose dimensions of the base
and of the fiber are both linear in a;

• the number of Fq-rational points on Oa, for large q, is
given by a polynomial in q with a uniform expression
in a; and

• the unipotent characters of the finite groups of
exceptional Lie type, associated to the orbits Oa

through the Springer correspondence, have degrees
given by polynomials that, when suitably expressed
as rational functions, have uniform expressions in a.

This last fact, which is true only for a ≥ 2, is the most
mysterious observation of this paper, and we would like
very much to have a theoretical explanation.

We observe similar phenomena for the other lines of
Freudenthal’s square: i.e., for the series of Lie algebras
g(A, B) when B is R, C, or H and also for the classical Lie
algebras. In fact, a few orbits are universal (or almost
universal), in the sense that they appear in every (or al-
most every) simple Lie algebra. We discuss certain prop-
erties of these orbits in connection with the work of Vogel
and Deligne around the “universal Lie algebra” and, also,
with the more geometric investigations of [Landsberg and
Manivel 01].

1.2 The Freudenthal-Tits Construction

We recall Tits’ construction of the exceptional Lie alge-
bras in terms of real normed algebras [Tits 66].

Let A a be a real normed algebra, so that A = R, C, H,
or O, the Cayley algebra, and let a := dimA = 1, 2, 4, or
8. The conjugation (i.e., the orthogonal symmetry with
respect to the unit element) will be denoted by u �→ u∗.
The subspace of A defined by the equation u∗ = −u is the
orthogonal ImA of the unit element. Let J3(A) denote
the Jordan algebra of Hermitian matrices of order three

with coefficients in A. The subspace of traceless matrices
is denoted J3(A)0.

Now, let A and B be two real normed algebras, and
let

g(A, B) = DerA × DerJ3(B)⊕ (ImA⊗J3(B)0).

There is a natural structure of Z2-graded Lie algebra on
g(A, B).

A useful variant of this construction is the triality
model, first discovered by Allison [Allison 78] and re-
cently rediscovered by several authors (see e.g., [Lands-
berg and Manivel 02a]). Define the triality algebra

t(A) = {θ = (θ1, θ2, θ3) ∈ so(A)3 :

θ3(xy) = θ1(x)y + xθ2(y) for all x, y ∈ A}.

We have t(R) = 0, t(C) = R
2, t(H) = so3×so3×so3, and

t(O) = so8.
For A and B two real normed algebras, let

g̃(A, B) = t(A)×t(B)⊕(A1 ⊗B1)⊕(A2 ⊗B2)⊕(A3 ⊗B3).

Then, there is a natural structure of (Z2 × Z2)-graded
semi-simple Lie algebra on g̃(A, B).

In what follows we will work over the complex numbers
and complexify the whole construction without changing
notations. We just have a new conjugation map x → x in
O (which now denotes the complexified Cayley algebra)
such that xy = x × y.

The result of both constructions is Freudenthal’s
magic square:

R C H O

R sl2 sl3 sp6 f4
C sl3 sl3×sl3 sl6 e6
H sp6 sl6 so12 e7
O f4 e6 e7 e8

.

1.3 The Exceptional Series

Letting B = O in the magic square, we obtain exceptional
Lie algebras of types f4, e6, e7, and e8.

An important fact for what follows is the observation
([Landsberg and Manivel 02a], page 68) that there is a
preferred cone C in the weight lattice of t(O) = so8 de-
fined by the condition that a weight in C is dominant and
integral when considered as a weight of each of the four
Lie algebras g(A, O) ⊃ so8. This cone is generated by
the four following weights of so8:

ω(g) = ω2, ω(g2) = ω1 + ω3 + ω4,

ω(g3) = 2ω1 + 2ω3, and ω(gQ) = 2ω1.
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f4 e6 e7 e8

ω(g) ◦ ◦ ◦ ◦• > ◦ ◦ ◦ ◦ ◦
•

◦ ◦ ◦ ◦ ◦•
◦

◦ ◦ ◦ ◦ ◦ ◦ •
◦

ω(g2) ◦ ◦ ◦ ◦•> ◦ ◦ ◦ ◦ ◦•
◦

◦ ◦ ◦ ◦ ◦ ◦
◦

• ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦

•

ω(g3) •◦ ◦ ◦ ◦> ◦ ◦ ◦ ◦ ◦• •
◦

◦ ◦ ◦ ◦ ◦ ◦•
◦

◦ ◦ ◦ ◦ ◦ ◦ ◦•
◦

ω(gQ) ◦ ◦ ◦ ◦•> ◦ ◦ ◦ ◦ ◦• •
◦

◦ ◦ ◦ ◦ ◦ ◦
◦

• ◦ ◦ ◦ ◦ ◦ ◦ ◦•
◦

TABLE 1.

(The representations we denote by g, g2, g3, and gQ are
denoted X1,X2,X3, and Y ∗

2 in [Deligne 96; Landsberg
and Manivel 02a].)

Table 1 contains the expressions of these four weights
in terms of the fundamental weights of each exceptional
Lie algebra.

2. NILPOTENT ORBITS IN THE EXCEPTIONAL SERIES

2.1 Series of Nilpotent Orbits

Since DerJ3(O) = f4 is a subalgebra of g(A, O) for all
A, every nilpotent orbit in f4 defines a nilpotent orbit Oa

in g(A, O) of the corresponding adjoint Lie group. More
generally, any element of f4 defines a series of orbits in
the Lie algebras g(A, O).

Proposition 2.1. For any element of f4, the dimension of
its orbit Oa in g(A, O) is a linear function of a.

Proof: Let X belong to f4, and let’s denote its central-
izer by c(X) ⊂ f4. The centralizer c(X)a of X in g(A, O)
is DerA × c(X)⊕ ImA⊗ k(X), where k(X) ⊂ J3(O)0
denotes the subspace annihilated by X. The codimen-
sion of this centralizer is obviously a linear function of a.
Since it is equal to the dimension of the orbit Oa of X in
g(A, O), our claim is proved.

Now we suppose that X ∈ f4 is nilpotent, and we
complete it into a sl2-triple (X,Y,H) of f4. The reduc-
tive part of c(X)a is the centralizer h(a) := c(X,Y,H)a

of the full sl2-triple ([Carter 1993], Proposition 5.5.9).
Moreover, the decomposition of the adjoint action of H

into eigenspaces is

g(A, O) =
⊕
i∈Z

g(a, i),

with [g(a, i), g(a, j)] ⊂ g(a, i+ j). In particular, g(a, 0) is
a subalgebra, and each g(a, i) is a g(a, 0)-module. Note
that g(a, 0) contains h(a).

Proposition 2.2. For every nilpotent orbit O1 in f4, let Oa

again denote the corresponding series of nilpotent orbits
in g(A, O). The dimension of the nilpotent radical r(a)
of the stabilizer of an element of Oa is a linear function
of a. For any i 
= 0, the dimension of the ith part g(a, i)
of the induced gradation of g(A, O) is a linear function
of a.

Proof: Let X ∈ O1 ⊂ f4 be nilpotent, and let (X,Y,H)
be a sl2-triple of f4. If k(X,Y,H) = k(X)∩k(Y )∩k(H),
the centralizer of the sl2-triple is

c(X,Y,H)a = DerA × c(X,Y,H)1 ⊕ ImA⊗ k(X,Y,H),

whose codimension in c(X)a is a linear function of a.
Since this is the reductive part h(a) of this centralizer,
its codimension is equal to the dimension of the nilpotent
radical r(a) of c(X)a, and our first claim is proved.

For the second claim, we just note that, for i 
= 0,
g(a, i) = g(0, i)⊕ ImA ⊗ k(i), where k(i) ⊂ J3(O)0 is the
ith eigenspace of the H-action. (We thank E. Vinberg
for these observations.)

Remark 2.3. Since h(a) centralizes the sl2-triple, h(a) ×
sl2 is naturally a subalgebra of g(A, O), which can be
decomposed into

g(A, O) =
⊕
k≥0

g∗(a, k)⊗ [k],

where [k] denotes the irreducible sl2-module of dimen-
sion k + 1 and g∗(a, k) is a h(a)-module. In particu-
lar, g∗(a, 0) = h(a). By elementary properties of the
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representation theory of sl2, the dimension of g∗(a, k) is
dim g(a, k)−dim g(a, k+2) and is, again, a linear function
of a for k 
= 0.

Recall that the nilpotent orbits can be classified by
combinatorial data as follows: if X belongs to some nilpo-
tent orbit O, we include it into a sl2-triple (X,Y,H). The
semi-simple element H can be supposed to belong to a
given Cartan subalgebra t, and a set of simple roots ∆
can be chosen such that α(H) is a nonnegative integer for
all α ∈ ∆. The collection of these integers, or the corre-
sponding weighted Dynkin diagram, uniquely defines the
nilpotent orbit O.

To understand the weighted Dynkin diagrams of a se-
ries Oa of nilpotent orbits in the exceptional Lie alge-
bras, it is convenient to use the triality model g̃(A, O)
rather than the more classical Tits-Freudenthal construc-
tion. Beginning with A = R, we have

f4 = g̃(R, O) = so8 ⊕O1 ⊕O2 ⊕O3.

A Cartan subalgebra t of f4 can be chosen inside so8. We
use the notations of [Bourbaki 1968] for the root system
of so8 and choose the same simple roots. The roots of
f4 are then given by those of so8, plus the weights of the
three inequivalent eight-dimensional representations O1,
O2, and O3. We get a set of positive roots by choosing a
linear form on t∗ of the form � = �1α

∗
1+�2α

∗
2+�3α

∗
3+�4α

∗
4,

with �1 > �2 > �3 > �4 > 0. The three representations
O1, O2, and O3 have highest weights ω1, ω3, and ω4 re-
spectively, and their minimal weights on which � is pos-
itive are φ1 = ω3 − ω4, φ2 = ω1 − ω4, and φ3 = ω1 − ω3

respectively. The simple roots of f4 must be either simple
roots of so8 or among these three minimal weights. Since
φ3 = φ1 + φ2, α3 = α4 + 2φ1, and α1 = α3 + 2φ4, the
simple roots of f4 must be α2, α4, φ1, and φ2. Note that
our four preferred weights ω(g), ω(g2), ω(g3), and ω(gQ)
of so8 provide us with the dual basis.

Now, let A be any real normed algebra (complexified).
A Cartan subalgebra of g(A, O) is given by the sum of
the Cartan subalgebra t of t(O) = so8 and a Cartan sub-
algebra of t(A). The root system of g(A, O) is the union
of the roots systems of so8 and t(A), plus the weights
of the form µ + ν, for µ a weight of some Oi and ν a
weight of Ai. The positive roots can be chosen to be the
positive roots of so8 and t(A), plus the weights µ + ν for
which �(µ) > 0. The simple roots of g(A, O) are then ei-
ther simple roots of so8, of t(A) (we denote them by α′

j),
or some of the φi − ω′

i, where ω′
i is the highest weight

of Ai (and −ω′
i its lowest weight, since Ai is self-dual).

Since S2
Ai contains the trivial representation, 2ω′

i must

belong to the root lattice of t(A), as well as ω′
1 +ω′

2 +ω′
3,

because there is an equivariant map A1 ⊗A2 → A3. We
easily deduce that, exactly as in the case of f4, φ3 − ω′

3,
α1, and α3 cannot be simple roots. The simple roots of
g̃(A, O) are, therefore, given by α2, α4, the α′

j ’s, φ1 −ω′
1,

and φ2 − ω′
2.

For a sl2-triple (X,Y,H) in f4 = g(R, O) defin-
ing a nilpotent orbit Oa in g̃(A, O), the labels of the
corresponding Dynkin diagram will be α2(H), α4(H),
α′

j(H) = 0, φ1(H), and φ2(H): i.e., exactly the same
labels as those of O1, plus some zeros on the simple roots
coming from t(A). We conclude:

Proposition 2.4. Let the nilpotent orbit O1 in f4 define
a series Oa of nilpotent orbits in the exceptional Lie al-
gebras. Suppose that the weighted Dynkin diagram of O1

defines the weight pω(g)+qω(g2)+rω(g3)+sω(gQ). Then
this remains true for the weighted Dynkin diagrams of
each of the nilpotent orbits Oa.

We encode the corresponding series by the symbol
gpgq

2g
r
3g

s
Q. With this convention, the Hasse diagram of

nilpotent orbits in f4 (see e.g., [Carter 19], page 440), is
given by Figure 1.

g2g2
2g

2
3g

2
Q

g2g2
2g

2
Q

g2
2g

2
Q

g2g2
2 gg3g

2
Q

g2
2

�� ��

gg3

�� ��

g2gQ g2gQ

�� ��

g3

����

g2
Q g2

�� ��
g2

gQ

g

0

FIGURE 1. Hasse diagram of nilpotent orbits in f4.
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Example 2.5. The series of nilpotent orbits gg3g
2
Q will be

given by the following four weighted Dynkin diagrams:

◦ ◦ ◦ ◦>
1 0 1 2 , ◦ ◦ ◦ ◦ ◦◦

2 1 0 1 2

1

, ◦ ◦ ◦ ◦ ◦ ◦◦
1 0 1 0 2 0

0

, ◦ ◦ ◦ ◦ ◦ ◦ ◦◦
2 0 0 0 1 0 1

0

.

2.2 Series of Stabilizers

For each series Oa, we proved in Proposition 2.2 that
the codimension of the centralizer, and the dimension of
the nilpotent radical r(a), are linear functions of a. In
this section we provide explicit data for each series of
orbits. We also give the reductive parts h(a) of these
centralizers and observe that they organize into series of
Lie algebras. Most of these are either given by the other
series g(A, B) of Freudenthal’s square, the derivation al-
gebras DerA, the triality algebras t(A) = DerA⊕ 2ImA,
or the intermediate series l(A) = DerA⊕ ImA of Barton
and Sudbery ([Barton and Sudbery 2002], page 13).

Another series that appears is the inf-Severi series
k(A). It has two preferred representations V (a) and
W (a), respectively of dimensions 2a and a + 2. Geomet-
rically, let X(a) be one of the four Severi varieties, which
is homogeneous under the action of the adjoint group of
g(A, C) [Landsberg and Manivel 2002d]. Then, k(A) is
the reductive part of the Lie algebra of the stabilizer of
a point in X(a), V (a) is the isotropy representation, and
W (a) is the complement of the Cartan square of V (a)∗

in S2V (a)∗ (except when a = 1, in which case it is equal
to this Cartan square).

These series of Lie algebras are given by:

A R C H O

DerA 0 0 sl2 g2

l(A) 0 C 2sl2 spin7

t(A) 0 2C 3sl2 spin8

k(A) sl2 sl2 × gl2 sl2 × sl4 spin10

.

Most of the data below have been gathered from the
tables in [Carter 1993]. We refer to each series of orbits by
its label gpgq

2g
r
3g

s
Q. Then, we provide the series of labels

used in the tables of [Carter 93]; in general, we provide
four of them, encoding the four orbits in f4, e6, e7, e8,
sometimes five, when the series comes from so8 ⊂ f4,
in which case we also provide the partition of 8 encoding
the corresponding orbit (actually sometimes a trialitarian
triple of orbits) in so8, which corresponds to a = 0.

Remark 2.6. If an so8 orbit is symmetric about its folding,
it also occurs in g2, and its dimension is given by the
same formula with a = −2/3. This occurs for the orbits
labeled g, g2, g

2, and g2g2
2. Similarly, the formulas for g

extend to both sl2 and sl3 with a = −4/3 and a = −1,
respectively, and g2 extends also to sl3. That these Lie
algebras should be incorporated in the exceptional series
was already observed in [Deligne 96].

• g: dimOa = 6a + 10
dim r(a) = 6a + 9

[(2214), A1, A1, A1, A1] h(a) = 3sl2, sp6, sl6,
so12, e7

This is the minimal nilpotent orbit, the cone over
the adjoint variety. Here h(a) = g(A, H), g(a, 0) =
g(A, H)×C, g(a, 1) = z2(A), the Zorn representation
(see for example [Landsberg and Manivel 02d]), and
g(a, 2) = C.

• gQ: dimOa = 10a + 12
dim r(a) = 9a + 6

[(2222), Ã1, 2A1,
2A1, 2A1]

h(a) = so5, sl4, co7,
so9 × sl2, so13

We denoted by con = son × C the conformal Lie al-
gebra. Here g(a, 0) = co3, co7, co8, co10 × sl2, co14

respectively, g(a, 1) is a spin representation of di-
mension 8a, and, for a > 0, g(a, 2) is the standard
vector representation of dimension a + 6.

• g2: dimOa = 12a + 16
dim r(a) = 9a + 9

[(3221), A1 + Ã1,
3A1, 3A1, 3A1]

h(a) = sl2, 2sl2, sl2 × sl3,
sl2 × sp6, sl2 × f4

This is the series of orbits discussed by Panyushev
in [Panyushev 02]. Here h(a) = sl2 × g(A, R) and
g(a, 0) = g(A, C) × gl2. If U denotes the natural
two-dimensional representation of this gl2, we have
g(a, 1) = J3(A) ⊗ U , g(a, 2) = J3(A), and g(a, 3) =
U .

• g2: dimOa = 12a + 18
dim r(a) = 6a + 8

[(3311), A2, A2, A2, A2] h(a) = 2C, sl3, 2sl3,
fsl6, e6

This is the a = 2 line of the Freudenthal square, that
is h(a) = g(A, C). Moreover, since this is the orbit
g2, the induced grading is the same as in the case
of the minimal nilpotent orbit, with indices doubled:
g(a, 0) = g(A, H) × C, g(a, 1) = 0, g(a, 2) = z2(A),
g(a, 3) = 0, and g(a, 4) = C.

• g3: dimOa = 16a + 18
dim r(a) = 9a + 6

[A2 + Ã1, A2 + 2A1,
A2 + 2A1, A2 + 2A1]

h(a) = sl2, gl2, 3sl2,
sl2 × so7
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Here h(a) = sl2×l(a). Moreover, g(a, 0) = gl3×k(A),
where k(A) is the inf-Severi series discussed above.
Let U denote the natural representation of gl3. Then
g(a, 1) = U ⊗ V (a), g(a, 2) = U∗ ⊗W (a), g(a, 3) =
V (a), and g(a, 4) = U .

• g2gQ: dimOa = 16a + 20
dim r(a) = 5a + 5

[(44), B2, A3, A3, A3] h(a) =2C, 2sl2, co5,
so7 × sl2, so11

Here g(a, 0) = 2gl2, co5, gl4 × C
2, gl2 × co8, co12 ×

C, respectively. Moreover, g(a, 1) and g(a, 3) have
dimension 4a, g(a, 2) and g(a, 4) have dimension a+
4, and g(a, 5) is one-dimensional. For a = 1 we get
representations of dimensions 4 and 5, in accordance
with the exceptional isomorphism so5 � sp4.

• g2
Q: dimOa = 18a + 12

dim r(a) = 8a
[Ã2, 2A2, 2A2, 2A2] h(a) =g2, g2, sl2 × g2,

2g2

For this case h(a) = DerA × DerO, a product of
derivation algebras. The grading is the doubling of
the grading for gQ.

• g2gQ: dimOa = 18a + 18
dim r(a) = 8a + 5

[Ã2 + A1, 2A2 + A1,
2A2 + A1, 2A2 + A1]

h(a) =sl2, sl2, 2sl2,
sl2 × g2

In this case h(a) = sl2 ×DerA. Moreover, g(a, 0) =
sl2 × C

2 × k(a), with the notations of the series g3,
and g(a, 1) = U ⊗ W (a)⊕V (a) has dimension 4a +
4, g(a, 2) = U ⊗ V (a)⊕C has dimension 4a + 1,
g(a, 3) = U ⊕V (a) has dimension 2a + 2, g(a, 4) =
W (a), and g(a, 5) = U , the natural representation
of sl2.

• gg3: dimOa = 18a + 20
dim r(a) = 7a + 4

[C3(a1), A3 + A1,

Ã3 + Ã1, A3 + A1]
h(a) =sl2, gl2, 3sl2,

sl2 × so7

This case is similar to the previous one, since
h(a) = sl2 × l(A) and g(a, 0) = sl2 × C × k(A).
But the induced grading is different: g(a, 1) =
U ⊕U ⊗V (a), g(a, 2) = V (a)⊕W (a), g(a, 3) =
U ⊗W (a), g(a, 4) = V (a), g(a, 5) = U , and g(a, 6) =
C.

• g2
2: dimOa = 18a + 22

dim r(a) = 6a + 6
[(53), F4(a3),D4(a1),

D4(a1),D4(a1)]
h(a) = 0, 0, 2C, 3sl2, so8

Note that h(a) = t(A), the triality algebra. The
induced grading is the same as for the series g2 only
with indices doubled.

• g2g2
2: dimOa = 18a + 24

dim r(a) = 3a + 4
[(71), B3,D4,D4,D4] h(a) = 0, sl2, sl3,

sp6, f4

This is the line a = 1 of the Freudenthal square, that
is h(a) = g(A, R).

• gg3g
2
Q: dimOa = 22a + 20

dim r(a) = 4a + 3
[C3, A5, Ã5, A5] h(a) = sl2, sl2, 2sl2,

sl2 × g2

Here h(a) = sl2 × DerA. Moreover, g(a, 0) = sl2 ×
C

3×DerA, and the induced grading has ten nonzero
terms in positive degrees.

• g2
2g

2
Q: dimOa = 22a + 22

dim r(a) = 4a + 4
[F4(a2), E6(a3),

E6(a3), E6(a3)]
h(a) = 0, 0, sl2, g2

• g2g2
2g

2
Q: dimOa = 22a + 24

dim r(a) = 3a + 3
[F4(a1),D5,D5,D5] h(a) = 0, C, 2sl2, so7

• g2g2
2g

2
3g

2
Q: dimOa = 24a + 24

dim r(a) = 2a + 2
[F4, E6, E6, E6] h(a) = 0, 0, sl2, g2

We see that h(a) = DerA for the two series g2
2g

2
Q and

g2g2
2g

2
3g

2
Q, and that h(a) is given by the intermediate

series l(A) in the case of g2g2
2g

2
Q.

2.3 Desingularizations of Orbit Closures

Given a sl2-triple (X,H, Y ) in a simple complex Lie al-
gebra g, a resolution of singularities for the orbit closure
GX of the adjoint group G can be obtained as follows (see
[Panyushev 1992]): let m = ⊕ i≥2g(i), let p = ⊕ i≥0g(i),
and let P ⊂ G be the parabolic subgroup with Lie alge-
bra p. Then, m is a P -module, and the “collapsing”

G ×P m −→ GX ⊂ g
↓

G/P

is a resolution of singularities. Here, as usual, G×P m de-
notes the homogeneous vector bundle over the projective
variety G/P , whose fiber at the base point P/P is the
P -module m. This manifold can also be defined as the
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Zg2g2
2g2

3g2
Q
(q) = q11a+8 (qa − 1)(q3a/2 − 1)(q3a/2+2 − 1)(q2a+2 − 1)(q2a+4 − 1)(q5a/2+4 − 1)(q3a+6 − 1)

(qa/2+2 − 1)

FIGURE 2.

quotient of the product G×m by the equivalence relation
(g,m) � (gp−1, p.m), where p ∈ P , so that the product
map (g,m) �→ g.m ∈ g descends to G ×P m.

Now, if (X,H, Y ) defines a series Oa of nilpotent or-
bits in g(A, O), we observed that each eigenspace g(a, i)
of ad(H) for the eigenvalue i 
= 0, so a fortiori m(a) =
⊕i≥2g(a, i), has a dimension which is linear in a. This
implies that the closure of Oa is birational to a homo-
geneous vector bundle whose fiber and base are both of

dimension linear in a.
Note that in most cases the orbit Oa is even, meaning

that the associated weighted Dynkin diagram has only
even weights. Such an orbit is a Richardson orbit, and
the desingularization above of its closure is simply given
by the cotangent bundle T ∗G/P .

For another nice situation, consider an orbit GX cor-
responding to an sl2 triple (X,H, Y ) such that H = Hβ

for some simple root β. Suppose that H defines a 5-
step grading of g, which means that the coefficient of the
highest root α̃ over β equals two. Let Pβ denote the
standard maximal parabolic subgroup of G defined by β.
Consider α̃ as a weight of Pβ and denote by Eβ(α̃) the
associated irreducible vector bundle on G/Pβ . Then, the
desingularisation of GX is

Eβ(α̃) −→ GX ⊂ g
↓

G/Pβ

.

Recall from [Tits 1954] that the adjoint variety Xad ⊂ Pg

is uniruled by the shadows of G/Pβ , a family of homo-
geneous varieties parametrized by G/Pβ . These shadows
are determined pictorially by deleting β from the Dynkin
diagram of g with the adjoint marking (when the adjoint
representation is fundamental, this just means that we
mark the node of the corresponding fundamental weight).
Then, the projectivization of GX is the union of the lin-
ear spans of the shadows, and the vector bundle Eβ(α̃)
is the family of the associated vector subspaces of g.
(Special cases of this were observed in [Landsberg and
Manivel 2002b].) This phenomenon occurs uniformly for
the series gQ.

2.4 Rational Points

A nilpotent orbit O � G/K ⊂ g is defined over Fq for q

large enough, and the number of its Fq-points is a poly-
nomial function of q [Brion and Peyre 02, Theorem 1.a].

We can deduce this polynomial function from the data
gathered in [Carter 93]. Indeed, if K is connected, this
number is equal to |G(Fq)|/|K(Fq)| (see [Brion and Peyre
02, Theorem 1.c]) and can be deduced from the formulas
in [Carter 93, pages 75–76] and the data for K gathered
above. When the group K is not connected, which may
happen in some cases, the formulas below hold for the
quotients |G(Fq)|/|K(Fq)|.

For each of our series Oa of nilpotent orbits, we express
the resulting polynomial as a rational function involving
only terms of the form q� − 1, where � is some linear
function of a, from a very limited list.

We begin with the biggest series of orbits, whose la-
bel is g2g2

2g
2
3g

2
Q. The number of Fq-points on these or-

bits is shown in Figure 2. For the other series, the
corresponding functions are simple quotients ZO(q) =
Zg2g2

2g2
3g2

Q
(q)/YO(q), with denominators given by the fol-

lowing table:

Yg(q) = q11a+8(qa − 1)(qa+2 − 1)(q3a/2 − 1)

(q3a/2+2 − 1)(q2a+2 − 1),

YgQ(q) = q21a/2+6(qa/2 − 1)(qa − 1)(qa+2 − 1)

(qa+4 − 1),

Yg2(q) = q19a/2+6(q2 − 1)(qa − 1)(q3a/2 − 1),

Yg2(q) = q8a+4(qa/2+1 − 1)(qa − 1)(qa+1 − 1)

(q3a/2 − 1),

Yg3(q) = q15a/2+4(q2 − 1)(qa/2 − 1),

Yg2gQ
(q) = q11a/2+2(qa/2 − 1)(qa − 1)(qa+2 − 1),

Yg2
Q

(q) = q6a+4(q2 − 1)(q6 − 1),

Yg2gQ(q) = q6a+4(q2 − 1),

Ygg3(q) = q11a/2+2(q2 − 1)(qa/2 − 1),

Yg2
2
(q) = q5a+2(qa/2 − 1)2,

Yg2g2
2
(q) = q7a/2(qa − 1)(q3a/2 − 1),

Ygg3g2
Q

(q) = q2a+2(q2 − 1),

Yg2
2g2

Q
(q) = q2a+2,

Yg2g2
2g2

Q
(q) = q3a/2(qa/2 − 1).

In particular, the number of Fq-points on the series of
minimal nilpotent orbits is

Zg(q) =
(q2a+4 − 1)(q5a/2+4 − 1)(q3a+6 − 1)

(qa/2+2 − 1)(qa+2 − 1)
.
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2.5 Unipotent Characters

The Springer correspondence uses local systems on nilpo-
tent orbits to define representations of Weyl groups,
which themselves are in natural correspondence with
unipotent characters of finite groups of the correspond-
ing Lie type. In this section we show that the unipotent
characters corresponding to our series of nilpotent orbits
in the exceptional Lie algebras are accordingly organized
into series. This can be seen on the polynomials giv-
ing the degrees of these characters, once we write these
polynomials as rational functions. More precisely, we are
able to write these functions as products of factors of
type qe − 1, or inverses of such factors, with e a linear
function of a. This striking fact only holds for a = 2, 4,
or 8. A theoretical explanation would be most welcome.
Also, it would be interesting to understand what really
happens when a = 1, that is, when e6 is folded into f4.

Note that the fundamental groups of the nilpotent or-
bits in our series are well-behaved: they are constant in
each series, either trivial or equal to Z2, in which case we
get two series of unipotent characters. Actually, there is
one exception to this: in the series labeled g2

Q, the nilpo-
tent orbits of e6 and e7 are simply connected, but that of
e8 has fundamental group Z2.

The following data are again transcriptions of the for-
mulas gathered in [Carter 93, pages 480–488] for the de-
grees of unipotent characters. Note that, in this refer-
ence, these degrees are given as products of cyclotomic
polynomials, a form in which the regularities that we ob-
served are far from visible. Some work is needed to put
these formulas into the form that follows. Note that only
a small family of linear functions is involved in these for-
mulas. Note also that many simplifications may occur in
each degree, but in different ways.

We let N denote the number of positive roots.

• g: The degree of the associated unipotent character is

qN−3a−5 (q2a+4 − 1)(q5a/2+4 − 1)
(qa/2+2 − 1)(qa+2 − 1)

.

• gQ: The degree of the associated unipotent character is

qN−5a−6 (q3a/2 − 1)(q3a/2+2 − 1)(q2a+4 − 1)(q3a+6 − 1)
(qa/2 − 1)(qa/2+2 − 1)(qa+2 − 1)(qa+4 − 1)

.

• g2: The degree of the associated unipotent character is

1
2
qN−6a−9 (qa/2+1 − 1)(qa+1 − 1)(q3a/2+2 − 1)(q2a+4 − 1)(q5a/2+4 − 1)(q3a+6 − 1)

(q − 1)(qa/2+2 − 1)2(qa/2+1 − 1)(qa+2 − 1)2(q3a/2+3 − 1)
.

• g2: The degrees of the two associated unipotent characters are

1
2
qN−6a−9 (qa+2 − 1)(q3a/2+2 − 1)(q2a+2 − 1)(q5a/2+4 − 1)(q3a+6 − 1)

(q − 1)(qa/2+1 − 1)(qa+1 − 1)(qa+4 − 1)(q3a/2+3 − 1)
and

1
2
qN−6a−9 (q − 1)(q3a/2+2 − 1)(q3a/2+3 − 1)(q2a+2 − 1)(q2a+4 − 1)(q5a/2+4 − 1)

(q2 − 1)(qa/2+1 − 1)(qa/2+2 − 1)2(qa+1 − 1)(qa+2 − 1)
.

• g2gQ: The degree of the associated unipotent character is

qN−8a−10 (q3a/2 − 1)(q3a/2+2 − 1)(q2a+2 − 1)(q5a/2+4 − 1)(q3a+6 − 1)
(q2 − 1)(qa/2 − 1)(qa/2+2 − 1)(qa/2+4 − 1)(qa+2 − 1)

.

• g2
2: The degrees of the two associated unipotent characters are qN−9a−11 times

(qa/2+1 − 1)3(qa − 1)(q3a/2 − 1)(q3a/2+2 − 1)(q2a+2 − 1)(q2a+4 − 1)(q5a/2+4 − 1)(q3a+6 − 1)

6(q − 1)2(q2 − q + 1)(qa/2 − 1)2(qa/2+2 − 1)3(qa+2 − 1)2(q3a/2+3 − 1)
and
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(qa − 1)(q3a/2 − 1)(q3a/2+2 − 1)(q2a+2 − 1)(q2a+4 − 1)(q5a/2+4 − 1)(q3a+6 − 1)
3(q2 − 1)2(qa/2 − 1)2(qa+2 − 1)2(q3a/2+6 − 1)

.

• g2g2
2: The degree of the associated unipotent character is

qN−9a−12 (q3a/2+2 − 1)(q2a+2 − 1)(q2a+4 − 1)(q5a/2+4 − 1)(q3a+6 − 1)
(q2 − 1)(q6 − 1)(qa/2+2 − 1)(qa/2+4 − 1)(qa+4 − 1)

.

• g2
Q: Here there is a problem: there are two associated characters for E8, but only one for E6 and E7. Neverthe-

less, let

φa(q) = qN−9a−6 (qa − 1)(q3a/2+2 − 1)(q2a+4 − 1)(q5a/2+4 − 1)(q3a+6 − 1)
(q2 − 1)2(q6 − 1)(qa/2+2 − 1)(qa/2+4 − 1)

.

The degrees of the unipotent characters attached to this series for E6 and E7 are φ2(q) and φ4(q), while the two
characters for E8 have their degrees given by

φ8,ε(q) =
1
2

q9 − ε

q3 − ε

q − ε

q7 − ε
φ8(q), where ε = ±1.

• g3: The degree of the associated unipotent character is

qN−8a−9 (qa/2+4 − 1)(q2a−2 − 1)(q2a+4 − 1)(q5a/2+4 − 1)(q3a+6 − 1)
(q2 − 1)(q6 − 1)(qa/2 − 1)(qa/2+2 − 1)(qa+2 − 1)

.

• g2gQ: The degree of the associated unipotent character is

1
3
qN−9a−11 (qa/2 − 1)(qa − 1)(q3a/2+2 − 1)(q2a+2 − 1)(q2a+4 − 1)(q5a/2+4 − 1)(q3a+6 − 1)

(q2 − 1)2(qa/2+2 − 1)3(qa+2 − 1)2
.

• gg3: The degree of the associated unipotent character is
1

2
qN−9a−11 (q3a/2 − 1)(q3a/2+2 − 1)(q2a+2 − 1)(q2a+4 − 1)(q5a/2+4 − 1)(q3a+6 − 1)

(q − 1)(q3 − 1)(qa/2+1 − 1)(qa/2+2 − 1)(qa+4 − 1)(q3a/2+3 − 1)
.

• gg3g
2
Q: The degree of the associated unipotent character is 1

2qN−11a−11 times

(qa − 1)(q3a/2 − 1)(q3a/2+2 − 1)(q2a+2 − 1)(q2a+4 − 1)(q5a/2+4 − 1)(q3a+6 − 1)

(q − 1)(q3 − 1)(q4 − 1)(qa/2+2 − 1)(qa/2+3 − 1)(qa/2+5 − 1)(qa+4 − 1)
.

• g2
2g

2
Q: The degree of the associated character is 1

2qN−11a−11 times

(qa/2+3 − 1)(qa − 1)(q3a/2 − 1)(q3a/2+2 − 1)(q2a+2 − 1)(q2a+4 − 1)(q5a/2+4 − 1)(q3a+6 − 1)
(q − 1)(q2 − 1)2(q3 + 1)(qa/2+2 − 1)3(qa/2+5 − 1)(qa+6 − 1)

.

• g2g2
2g

2
Q: The degree of the associated unipotent character is qN−11a−12 times

(qa/2+4 − 1)(q2a−2 − 1)(q2a+2 − 1)(q2a+4 − 1)(q5a/2+4 − 1)(q3a+6 − 1)
(q2 − 1)(q4 − 1)(q6 − 1)2(qa/2 − 1)(qa/2+8 − 1)

.

• g2g2
2g

2
3g

2
Q: The degree of the associated unipotent character is qN−12a−12 times

(qa − 1)(q3a/2 − 1)(q3a/2+2 − 1)(q2a+2 − 1)(q2a+4 − 1)(q5a/2+4 − 1)(q3a+6 − 1)
(q2 − 1)(q6 − 1)(q8 − 1)(q12 − 1)(qa/2+2 − 1)(qa/2+4 − 1)(qa/2+8 − 1)

.
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ψggQ
(q) =

1
2

(q2 − 1)(q5a/4−2 − 1)(q3a/2+2 − 1)(q2a+2 − 1)(q2a+4 − 1)(q3a+6 − 1)
(q3 − 1)(qa/4−1 − 1)(qa/2 − 1)(qa/2+1 − 1)(qa/2+2 − 1)(qa/2+4 − 1)

.

FIGURE 3.

2.6 Series of Type E6

We now examine how the five remaining nilpotent orbits
in e6 propagate to orbits in e7 and e8. They are associated
to sl2-triples (X,H, Y ) for which the semi-simple element
H can be chosen to belong to t(O) = so8 and, hence, can
again be encoded by a label gpgq

2g
r
3g

s
Q.

The degrees of the associated unipotent characters do
not behave as well as in the series coming from f4. A
first difficulty is that, in each case, there are two associ-
ated characters in type E7 and E8, but only one in type
E6. We already encountered a similar phenomenon for
the series g2

Q = [A2, 2A2, 2A2, 2A2], where the degrees of
the two unipotent characters were closely related. This
is again true for the series of type E6, and an a priori
explanation would be welcome.

For each series of orbits, we provide the label used in
[Carter 93], the dimension of the orbits Oa and of the
unipotent radical r(a) of the generic centralizers, which
again are both linear functions in a, and the reductive
parts h(a) of these centralizers.

• ggQ: A2 + A1, dimOa = 15a + 16,
dim r(a) = 9a + 5, h(a) = gl3, gl4, sl6.

The degree of the associated unipotent character in
type E6 is

deg φ64,13 = q13 (q6 − 1)(q8 − 1)(q12 − 1)

(q − 1)(q3 − 1)(q3 − 1)
.

In type E7 the degrees of the two unipotent charac-
ters are

deg φ120,25 =
1

2
q25 (q8 − 1)(q10 − 1)(q12 − 1)(q18 − 1)

(q − 1)(q3 − 1)(q4 − 1)(q6 − 1)

× (q3 + 1)(q7 + 1)

(q4 + 1)(q6 + 1)
and

deg φ105,26 =
1

2
q25 (q8 − 1)(q10 − 1)(q12 − 1)(q18 − 1)

(q − 1)(q3 − 1)(q4 − 1)(q6 − 1)

× (q3 − 1)(q7 − 1)

(q4 − 1)(q6 − 1)
.

In type E8 the degrees of the two unipotent charac-
ters are

deg φ210,52 =
1

2
q52 (q14 − 1)(q18 − 1)(q20 − 1)(q30 − 1)

(q3 − 1)(q4 − 1)(q5 − 1)(q6 − 1)

× (q4 + 1)(q12 + 1)

(q7 + 1)(q9 + 1)
and

deg φ160,55 =
1

2
q52 (q14 − 1)(q18 − 1)(q20 − 1)(q30 − 1)

(q3 − 1)(q4 − 1)(q5 − 1)(q6 − 1)

× (q4 − 1)(q12 − 1)

(q7 − 1)(q9 − 1)
.

In Figure 3, let us introduce the following rational
function, which is close to those we already met,
except for the appearance of an a/4 in the exponents
of q. Then we can write the degrees in the figure as

qN−15a/2−8ψggQ(q)
(qa/4+2 − 1)(q5a/4+2 − 1)

(q3a/4+1 − 1)(q3a/4+3 − 1)
and

qN−15a/2−8ψggQ(q)
(qa/4+2 + 1)(q5a/4+2 + 1)

(q3a/4+1 + 1)(q3a/4+3 + 1)
.

These formulas have several intriguing features.
They are obviously closely related one to the other.
For a = 1, the noninteger exponents cancel out.
Moreover, the second part of this expression gives
1 for a = 1, hence the same rational expression with
coefficient one half, in fact, there is only one charac-
ter in this case, whose degree is given by the sum of
these two equal contributions. What kind of group
theoretic explanation could this phenomenon have?

In this series, the number of Fq-points is given by

q3a+4 (q5a/4−2 − 1)(q3a/2 − 1)(q3a/2+2 − 1)(q2a+2 − 1)(q2a+4 − 1)(q5a/2+4 − 1)(q3a+6 − 1)
(q3 − 1)(qa/4 − 1)(qa/2 − 1)(qa/2+1 − 1)(qa/2+2 − 1)

.
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• g2g2
Q: A4, dimOa = 20a + 20, dim r(a) = 5a + 4, h(a) = gl2, gl3, sl5.

Here we have one unipotent character φ81,6 in type E6, two in type E7, φ420,13 and φ336,14, and again two in
type E8, φ2268,30 and φ1296,33. Their degrees are given by the following expressions, with the same phenomenon
for a = 1 as in the previous case:

qN−10a−10ψg2g2
Q

(q)
(q2 − 1)(qa+2 − 1)

(qa/2+1 − 1)(qa/2+3 − 1)
and qN−10a−10ψg2g2

Q
(q)

(q2 + 1)(qa+2 + 1)

(qa/2+1 + 1)(qa/2+3 + 1)
, where

ψg2g2
Q

(q) =
1

2

(q3a/4−1 − 1)(q3a/4 − 1)(qa+4 − 1)(q2a−2 − 1)(q2a+2 − 1)(q5a/2+4 − 1)(q3a+6 − 1)

(q4 − 1)(q6 − 1)(qa/4 − 1)(qa/4+1 − 1)(qa/2 − 1)(qa/2+1 − 1)2
.

In this series, the number of Fq-points is given by

q15a/2+6 (q2 − 1)(q5a/4−2 − 1)(q3a/2 − 1)(q3a/2+2 − 1)(q2a+2 − 1)(q2a+4 − 1)(q5a/2+4 − 1)(q3a+6 − 1)

(q3 − 1)(qa/4 − 1)(qa/2 − 1)(qa/2+1 − 1)
.

• gg3gQ: A4 + A1, dimOa = 21a + 20, dim r(a) = 6a + 3, h(a) = C C
2, gl3.

Here we have one unipotent character φ60,5 in type E6, two in type E7, φ512,11 and φ512,12, and again two in type
E8, φ4096,26 and φ4096,27. Their degrees are given by

qN−21a/2−10ψgg3gQ
(q)

(except for a = 1 where the degree of the unique character is twice this quantity), with

ψgg3gQ(q) =
1

2

(q2 − 1)(q5a/4−2 − 1)(q3a/2 − 1)(q3a/2+2 − 1)(q2a+2 − 1)(q2a+4 − 1)(q5a/2+4 − 1)(q3a+6 − 1)

(q − 1)(q3 − 1)2(qa/4 − 1)(qa/2+1 − 1)(qa/2+3 − 1)(qa/2+5 − 1)(q3a/2+3 − 1)
.

In this series, the number of Fq-points is given by

q15a/2+6 (q2 − 1)(q5a/4−2 − 1)(q3a/2 − 1)(q3a/2+2 − 1)(q2a+2 − 1)(q2a+4 − 1)(q5a/2+4 − 1)(q3a+6 − 1)

(q − 1)(q3 − 1)(qa/4 − 1)
.

• g2g3gQ: D5(a1), dimOa = 21a + 22, dim r(a) = 5a + 3, h(a) = C, gl2, sl4.

Here we have one unipotent character φ64,4 in type E6, two in type E7, φ420,10 and φ336,11, and again two in type
E8, φ2800,25 and φ2100,28. Their degrees are given by

qN−21a/2−11ψg2g3gQ
(q) and qN−21a/2−11ψ′

g2g3gQ
(q),

(except for a = 1 where the degree of the unique character is the sum of these two—equal in this case—quantities),
with

ψg2g3gQ
(q) =

1

2

(qa/4+4 − 1)(q3a/4 − 1)(q5a/4−2 − 1)(q3a/2+2 − 1)(q2a+2 − 1)(q2a+4 − 1)(q5a/2+4 − 1)(q3a+6 − 1)

(q3 − 1)2(qa/4 − 1)(qa/4+1 − 1)(qa/2 − 1)(qa/2+4 − 1)(qa/2+8 − 1)(q3a/4+3 − 1)
and

ψ′
g2g3gQ

(q) =
1

2

(q3a/4−1 − 1)(q5a/4−1 − 1)(q3a/2 − 1)(q3a/2+2 − 1)(q2a+2 − 1)(q2a+4 − 1)(q5a/2+4 − 1)(q3a+6 − 1)

(q3 − 1)(q5 − 1)(qa/4 − 1)(qa/2 − 1)(qa/2+2 − 1)2(q3a/4 − 1)(q3a/2+6 − 1)
.
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In this series, the number of Fq-points is given by

q8a+7 (q2 − 1)(q5a/4−2 − 1)(q3a/2 − 1)(q3a/2+2 − 1)(q2a+2 − 1)(q2a+4 − 1)(q5a/2+4 − 1)(q3a+6 − 1)
(q3 − 1)(qa/4 − 1)(qa/2 − 1)

.

• g2g2
3g

2
Q: E6(a1), dimOa = 24a + 22, dim r(a) = 3a + 2, h(a) = 0, 0, sl3.

Here again we have one unipotent character φ6,1 in type E6, two in type E7, φ120,4 and φ105,5, and again two in
type E8, φ2800,13 and φ2100,16. Their degrees are given by

qN−12a−11ψg2g2
3g2

Q
(q) and qN−21a/2−11ψ′

g2g2
3g2

Q
(q)

(except for a = 1 where the degree of the unique character is the sum of these two—equal in this case—quantities),
with

ψg2g2
3g2

Q
(q) =

1

2

(qa/2+2 − 1)(q3a/4 − 1)(q3a/4 − 1)(q2a−2 − 1)(q2a+2 − 1)(q2a+4 − 1)(q5a/2+4 − 1)(q3a+6 − 1)

(q3 − 1)2(q4 − 1)(q12 − 1)(qa/4 − 1)(qa/4+1 − 1)(qa/2+1 − 1)(qa/2+5 − 1)
and

ψ′
g2g2

3g2
Q

(q) =
1

2

(qa/2+5 − 1)(q5a/4−2 − 1)(q3a/2 − 1)(q3a/2+2 − 1)(q2a+2 − 1)(q2a+4 − 1)(q5a/2+4 − 1)(q3a+6 − 1)

(q3 − 1)(q4 − 1)(q6 − 1)2(qa/4 − 1)(q3a/2 − 1)(q3a/2+2 − 1)(qa+10 − 1)
.

In this series, the number of Fq-points is given by

q21a/2+7 (q2 − 1)(q5a/4−2 − 1)(q3a/2 − 1)(q3a/2+2 − 1)(q2a+2 − 1)(q2a+4 − 1)(q5a/2+4 − 1)(q3a+6 − 1)

(q3 − 1)(qa/4 − 1)
.

This accounts for all nilpotent orbits in e6, about one
half of those in e7, and a little less than one third of those
in e8.

3. SERIES FOR THE OTHER ROWS OF
FREUDENTHAL SQUARE

The exceptional series of Lie algebras is the fourth line
g(A, O) in the magic square of Freudenthal, and we just
saw how this allows us to organize their nilpotent orbits
into series.

In this section we briefly discuss the other three lines
of Freudenthal square and their nilpotent orbits.

3.1 The Subexceptional Series g(A, H)

Here the Lie algebras g, and the number of positive roots
N , parametrized by a are:

a 1 2 4 8
g sp6 sl6 so12 e7
N 9 15 30 63

.

The nilpotent orbits of so12 are parametrized by pairs
of partitions (α, β) such that 2|α|+|β| = 12 and β has dis-
tinct parts. The nilpotent orbits of sl6 are parametrized
by partitions of six. The nilpotent orbits of sp6 are

parametrized by pairs of partitions (α, β) with |α|+ |β| =
3, where β has distinct parts (see [Carter 93]).

Given a nilpotent orbit (α, β) of sp6, the elementary
divisors are given by repeating each part of α twice and
doubling each part of β. By ordering these elementary
divisors, we get a partition λ with |λ| = 6, which corre-
sponds to a nilpotent orbit of sl6. Given a nilpotent orbit
λ of sl6, we can take the pair of partitions (λ, ∅), which
corresponds to a nilpotent orbit of so12. These construc-
tions give the first three terms of each series below.

For the subexceptional series we have three preferred
representations, g and gQ = V2, gAP2 = V , in the no-
tations of [Landsberg and Manivel 02a]. The highest
weights of these representations are shown in Table 2.

We obtain the following series:

• g: dimOa = 4a + 2,
dim r(a) = 4a + 1,

[(11, 1), (214),
(214,−), A1]

h(a) =so5, sl4(so6),
sl2 × so8, so12,

• gQ: dimOa = 6a + 4,
dim r(a) = 5a + 2,

[(21,−), (2211),
(2211,−), 2A1]

h(a) = gl2, 2sl2, sl2 × so5,
sl2 × so9 = sl2 × soa+1,
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sp6 sl6 so12 e7

ω(g) ◦ ◦ ◦•2 > ◦ ◦ ◦ ◦ ◦• • ◦ ◦ ◦ ◦ ◦•
◦

◦ ◦ ◦ ◦ ◦ ◦•
◦

ω(gAP2) ◦ ◦ ◦•> ◦ ◦ ◦ ◦ ◦• ◦ ◦ ◦ ◦ ◦•
◦

◦ ◦ ◦ ◦ ◦ ◦•
◦

ω(gQ) ◦ ◦ ◦•> ◦ ◦ ◦ ◦ ◦• • ◦ ◦ ◦ ◦ ◦•
◦

◦ ◦ ◦ ◦ ◦ ◦•
◦

TABLE 2.

• gAP2 : dimOa = 6a + 6,
dim r(a) = 3a + 3,

[(2, 1), (222),
(222,−), 3A1]

h(a) =sl2, sl3, sp6,
f4 = g(A, R),

• g2
Q: dimOa = 10a + 4,

dim r(a) = 4a,
[(3,−), (33),

(33,−), 2A2]
h(a) = sl2, sl2, 2sl2,

sl2 × g2 = sl2 ×DerA,

• g2
AP2gQ: dimOa = 10a + 4,

dim r(a) = 3a + 1,
[(1, 2), (411),

(411,−), A3]
h(a) = sl2, gl2, 3sl2,

sl2 × so7 = sl2 × l(A),

• gAP2g: dimOa = 10a + 6,
dim r(a) = 3a + 2,

[(−, 21), (42), (42,−),
(A3 + A1)′′]

h(a) =0, C, 2sl2,
so7 = l(A),

• g2g2
AP2g2

Q: dimOa = 12a + 6,

dim r(a) = 2a + 1,
[(−, 3), (6), (6,−), A5] h(a) =0, 0, sl2, g2 = DerA.

This leaves three nilpotent orbits of sl6 not in one of
these series. These correspond to the partitions (51),
(321), and (3111) and propagate as follows:

• g2g2
Q: dimOa = 12a + 4,

dim r(a) = 3a,
[(51), (51,−), A4] h(a) = 0, 0, sl3,

• ggQ: dimOa = 9a + 4,
dim r(a) = 5a + 1,

[(321), (321,−),
A2 + A1]

h(a) = 0, sl2, sl4,

• g2: dimOa = 8a + 2,
dim r(a) = 5a + 1,

[(3111), (3111,−), A2] h(a) = sl3, so6, sl6.

3.2 The Severi Series g(A, C)

Here the Lie algebras g, and the number of positive roots
N , parametrized by a are:

a 1 2 4 8
g sl3 2sl3 sl6 e6
N 3 6 15 36

.

The nilpotent orbits of sl3 correspond to partitions of
three, and the nilpotent orbits of sl6 correspond to par-
titions of six. Given a partition of three, we construct a
partition of six by repeating each part twice. There are
two dual preferred representations V and V ∗, of dimen-
sion 3a + 3, where V can be identified with the Jordan
algebra J3(A). We obtain two series (we left a “?” for
the non-simple case, which has no standard label):

• V : dimOa = 4a,
dim r(a) = 3a,

[(21), (?), (2211), 2A2] h(a) = 0, 0, sl2, g2 = DerA,

• gQ = V V ∗: dimOa = 6a,
dim r(a) = 2a,

[(3), (?), (33), 2A1] h(a) = 0, C, sl2, so7 = l(A).

3.3 The Sub-Severi Series g(A, R)

This is the series g(A, R) = sl2, sl3, sp6, f4, with its pre-
ferred representation W = J3(A)0 of dimension 3a + 2:
the space of traceless matrices in J3(A). This leads to
the following series of orbits:

• gQ = W : dimOa = 4a − 2,
dim r(a) = a,

[(2), (3), (3,−), Ã2] h(a) = 0, 0, sl2, g2 = DerA.

4. BEYOND THE EXCEPTIONAL LIE ALGEBRAS

4.1 General Dimension Formulas

There are four nonzero nilpotent orbits occuring in
all simple Lie algebras of rank greater than two (and
also g2):
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1. the regular nilpotent orbit, which is the open orbit
in the nilpotent cone;

2. the subregular nilpotent orbit, which is the open or-
bit in the boundary of the regular orbit;

3. the minimal nilpotent orbit, which we call Oad ⊂
g (we often work with its projectivization Xad ⊂
Pg), and in this paper is denoted simply g, as the
marked Dynkin diagram corresponds to the adjoint
representation;

4. the orbit whose projectivization we called σ(1)(Xad)
in [Landsberg and Manivel 01].

Panyushev, in [Panyushev 02], calls this last orbit O,
but because of our usage of O to denote the octonions,
we will denote it by Oσ(1)(Xad) or g2, since its marked
Dynkin diagram gives the weight of g2. Note that Pa-
nyushev only observes this orbit when the adjoint rep-
resentation is fundamental, where it corresponds to the
diagram marked with a 1 over nodes adjacent to the node
of the adjoint representation and with zeroes elsewhere.
Geometrically, Oσ(1)(Xad) may be described as either the
union of tangent lines to the contact distribution on Xad

or as the closure of the set of points in Pg lying on a
two-parameter family of secant lines (see [Landsberg and
Manivel 01]).

The dimension of the regular nilpotent orbit has a sim-
ple expression, either the number of roots or the dimen-
sion of g minus the rank of g, and the subregular orbit,
being of codimension two in the closure of the regular
orbit, inherits a dimension formula.

Nevertheless, when we study orbits in series, we see
that, from the series perspective, the properties of be-
ing regular and subregular are not good ones. What
happens instead is that the regular and subregular or-
bits of the fixed algebra in a series gives rise to a series
of orbits which, in general, are not regular or subregular.
This is not surprising as the dimension of the regular and
subregular orbits grow like the square of the parameter
parametrizing the algebras (as do the dimensions of the
algebras themselves), while we insist that the nilpotent
orbits in series have linear dimension formulas.

The starting point of Vogel’s conjectured universal Lie

algebra was an attempt to construct a category with
analogs of the Casimir, the bracket, the Killing form,
and the Jacobi identity, which dominates the category
of modules of any simple Lie algebra. It leads to a
parametrization of the simple Lie algebras by a projective
plane, whose barycentric coordinate is the eigenvalue of
the Casimir operator on the adjoint representation, and

the scaling is by the length of the longest root. (See [Vo-
gel 99; Deligne 96] for these parameters, and [Landsberg
and Manivel 02a; Landsberg and Manivel 02d] for the
relation with the triality model.)

Remarkably, the minimal nilpotent orbit has a nice
dimension formula in the spirit of Vogel’s work. This was
first observed by W. Wang ([Wang 99], independently of
this interpretation).

Proposition 4.1. Let g be a complex simple Lie algebra.
After an invariant quadratic form has been chosen, let

√
a

denote the length of the longest root, and let C denote the
Casimir eigenvalue for g. Then,

dimOad =
2C

a
− 2.

Wang’s formula is actually dimOad = 2ȟ − 2, where
ȟ denotes the dual Coxeter number. But, once we have
fixed an invariant scalar product on the root lattice, we
can write

C

a
=

〈α̃ + 2ρ, α̃〉
〈α̃, α̃〉 = 1 + 2

〈ρ, α̃〉
〈α̃, α̃〉 = ȟ,

the last equality being a definition. Here ã denotes the
highest root and 2ρ the sum of all positive roots. Note
that this is just a linear formula, while Vogel’s dimension
formulas for the modules are much more complicated.

In [Landsberg and Manivel 01] we discuss two other
series of nilpotent orbits that are not completely general.
We revert to the notation of [Landsberg and Manivel 01],
discussing the projectivizations of the orbit closures in
Pg. In particular, the dimension of the corresponding
orbit closure is one more than that of its projectivization.

1. Oσ(3)(Xad): this orbit occurs in the exceptional series
(with label g2) and the sl series. Geometrically, it is
the union of tangent lines to Xad that are tangent
to the quartic cone inside each hyperplane in the
contact distribution. In terms of weighted Dynkin
diagrams, one marks the adjoint nodes with a 2 and
puts zeros elsewhere.

2. OσQ(Xad): here Q denotes an unextendable quadric
on Xad. This series occurs in the exceptional series
(with label gQ), and there are two different series
of such orbits in the so-series (even three for so8,
but they are all isomorphic). In each series the di-
mension of Q is a linear function of the parameter
parametrizing the series. Geometrically, these or-
bits are obtained by taking a uniruling of Xad by
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unextendable quadrics and taking the union of their
projective spans. In terms of weighted Dynkin dia-
grams, one marks with a 1 the node such that, when
erased, the connected component of the node marked
for the adjoint representation is a marked Dynkin di-
agram corresponding to a quadric hypersurface (see
[Landsberg and Manivel 01]).

The dimensions of these orbits for the exceptional se-
ries were computed in [Landsberg and Manivel 01]. For
the classical series they can be extracted from [Carter 93],
and we get the following:

Corollary 4.2.

dimOσ(1)(Xad) =
4C

a
− 5,

dimOσ(3)(Xad) =
4C

a
− 9, and

dimOσQ(Xad) =
4C

a
− dim Q − 5

Note that in the classical series, if one extends a par-
tition by zero, one obtains a series of nilpotent orbits in
our sense, in that the dimensions of the orbits are given
as linear functions of the parameters. More precisely, we
have the next proposition:

Proposition 4.3. Fix f , and respectively let gf =
slf , sof , sp2f and g(t) = gf+t. Let O be a nilpotent or-
bit in gf . Let ri denote the number of elementary divi-
sors with exponent i in the partition defining O (following
[Carter 93]). Let Ot ⊂ gt be the corresponding orbit with
r1(t) = t + r1 and all the other ris the same. Then,
dimOt is a linear function of t. More precisely, we have

dimOt =




2t(f − (r1 + · · · + rn)) + dimO sl-case

t(f − (r1 + · · · + rn) − 3
4
) + dimO so-case

2t(f − (r1 + · · · + rn) + 3
4
) + dimO sp-case

.

As with the exceptional series, these orbits also share
a common geometry. Their desingularizations by vector
bundles E → G/P are such that the spaces G/P have
uniform geometric interpretations, which are obvious in
the classical cases, and can be understood uniformly in
terms of their shadows on the adjoint varieties Xad ⊂ Pg.
The P -modules defining E also have uniform interpreta-
tions in terms of Tits geometries.

4.2 The Generalized Magic Square

This is the following 3×3 square, with parameters n ≥ 4
and a, b = 1, 2, 4:

a = 1 a = 2 a = 4
b = 1 son sln sp2n

b = 2 sln 2sln sl2n

b = 4 sp2n sl2n so4n

.

Recall from [Carter 1993] or [Collingwood and Mc-
Govern 93, Section 5.1], that nilpotent orbits in sln, re-
spectively sp2n, so2n+1, so2n, are in one-to-one correspon-
dence with partitions (d1, . . . , dn) of n, respectively par-
titions of 2n in which odd parts occur with even mul-
tiplicity, partitions of 2n + 1 in which even parts occur
with even multiplicity, and partitions of 2n in which even
parts occur with even multiplicity (with a slight modifi-
cation for partitions with only even parts). We let ri be
the number of times i occurs in the partition.

Proposition 4.4. For every nilpotent orbit O1,1 in son,
there is a nilpotent orbit Oa,b for each element of the
generalized magic square, whose dimension is a bilinear
function of a and b. More precisely, let (r1, . . . , rn) be
as above for the partition parametrizing the orbit O1,1 ⊂
son. Then,

dimOa,b =
ab

2
(n2 − Σi(Σj≥irj)2

− n + Σi oddri) + (a + b − 2)(n − Σi oddri).

More generally, one can take a nilpotent orbit for any
algebra in the square and extend it across and below to
get a bilinear function in a, b.

Proof: Given a partition of n admissible for son, just use
it as a partition for sln to get a nilpotent orbit. Given
a partition of sln, double it to get an admissible parti-
tion for sp2n. Given a partition for sln, use it twice to
get a partition for 2sln. Given two partitions of length
n (parametrizing a nilpotent orbit in 2sln), put them
together to get a partition for sl2n. Given a partition
admissible for sp2n, just use it to get a partition for sl2n.
Given a partition of sl2n, double it to get an admissible
partition for so4n. These are the partitions we use to de-
fine Oa,b from O1,1. Note that the process is symmetric
in how one moves across the chart.

Now, the proof just consists of checking that, for each
value of a, b, the dimension given by the above formula is
consistent with those given in [Collingwood and McGov-
ern 93] for the classical Lie algebras.
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Note that this works also for the n = 3 chart including
the exceptional groups, and also note that one can begin
anywhere in the chart to get orbits to the right and below.
Finally, specializing to each row, one gets linear functions
of a for the dimensions.

Example 4.5. The regular nilpotent orbit in son induces
a series with

dimOa,b =
ab

2
(n2 − n − 1 + ε) + (a + b + 2)(n − ε),

where ε = 1 if n is odd and 0 if n is even.

Example 4.6. (A Magical Orbit.) Consider the partition
(3, 1, . . . , 1) and the resulting three parameter family of
orbits Oa,b,n. We get the following dimension formula,
which has the very nice property of being linear in each
of the parameters:

dimOa,b,n = 2(ab(n − 2) + a + b − 2).

Note that this orbit is universal in that it occurs in
all simple Lie algebras: in the exceptional and sub-
exceptional cases this is the series labeled g2

Q, in the
Severi case the series labeled gQ = V V ∗, and in the sub-
Severi case the series labeled gQ = W .
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