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The Monotone Upper Bound Problem asks for the maximal
number M(d, n) of vertices on a strictly increasing edge-path
on a simple d-polytope with n facets. More specifically, it asks
whether the upper bound

M(d, n) ≤ Mubt(d, n)

provided by McMullen’s [McMullen 70] Upper Bound Theorem
is tight, where Mubt(d, n) is the number of vertices of a dual-to-
cyclic d-polytope with n facets.

It was recently shown that the upper bound M(d, n) ≤
Mubt(d, n) holds with equality for small dimensions (d ≤ 4

[Pfeifle 04]) and for small corank (n ≤ d + 2 [Gärtner et al. 01]).
Here we prove that it is not tight in general: in dimension d = 6,
a polytope with n = 9 facets can have Mubt(6, 9) = 30 vertices,
but not more than M(6, 9) ≤ 29 vertices can lie on a strictly
increasing edge-path.

The proof involves classification results about neighborly
polytopes of small corank, Kalai’s [Kalai 88] concept of ab-
stract objective functions, the Holt-Klee conditions [Holt and
Klee 98], explicit enumeration, Welzl’s extended Gale diagrams
[Welzl 01], and randomized generation of instances, as well as
nonrealizability proofs via a version of the Farkas lemma.

1. INTRODUCTION

In an attempt to understand the worst-case behaviour of
the simplex algorithm for linear programming, Motzkin
[Motzkin 57], in 1957, considered the maximal number
Mubt(d, n) of facets that a d-polytope with n vertices
could have and claimed that the maximum is given by
the cyclic d-polytopes Cd(n) with n vertices; by polarity,
Mubt(d, n) is the maximal number of vertices for a simple
d-polytope with n facets.

Motivated by the same problem, Klee [Klee 65], in
1965, asked for the maximal number M(d, n) of vertices
that could lie on a monotone path (that is, an edge-path
that is strictly monotone with respect to a linear objec-
tive function) on a d-polytope with n facets.

Motzkin’s claim was substantiated by McMullen [Mc-
Mullen 70] in 1970. It seems that traditionally Mc-
Mullen’s result, the Upper Bound Theorem, was also
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taken as a solution to Klee’s question, the Monotone Up-
per Bound Problem. However, a priori it is only clear
that for all n > d ≥ 2 one has an inequality

M(d, n) ≤ Mubt(d, n),

but it is not at all clear that equality always holds, that
is, that for all n > d ≥ 2 one can construct a simple
dual-to-neighborly d-polytope with n facets that admits
a monotone Hamilton path:

. . . to answer the original question, we must
find out whether both bounds above can be
simultaneously tight: It is not clear that for a
dual of a cyclic polytope, there can be a mono-
tone path through all, or most, of the vertices.
[Ziegler 01, page 1201]

Thus, in [Ziegler 98, Problems 3.11* and 8.41*], it was
explicitly asked: how large is M(d, n)? Does it coincide
with Mubt(d, n)?

The quest for “bad examples” for the simplex algo-
rithm equipped with specified pivot rules has led to ex-
ponential lower bounds for M(d, n). The most prominent
one is M(d, 2d) ≥ 2d, as seen from the famous Klee-Minty
cubes [Klee and Minty 72]. We refer to [Amenta and
Ziegler 98] for a summary of such lower bounds, formu-
lated in the framework of “deformed products.” How-
ever, these lower bounds are not tight in general: for
example, for d = 4 and n = 8, the Klee-Minty cubes
yield 16 ≤ M(4, 8) ≤ Mubt(4, 8) = 20, while indeed
M(4, 8) = 20.

In dimension 5, we have M(5, 7) = 12 according to
[Gärtner et al. 01]. That is, there is a realization of
C5(7)∆ (which is combinatorially equivalent to a product
of a triangle with a tetrahedron) with a monotonely in-
creasing path through all 12 vertices. Moreover, after a
projective transformation, we may assume that the path
is monotone with respect to a linear function ϕ whose
unique minimum has value 0 and whose unique maxi-
mum has value 1. Thus, a deformed prism according to
[Amenta and Ziegler 98, Theorem 4.3] will have 24 ver-
tices and a monotone path that visits all of them, proving
that 24 ≤ M(6, 9) ≤ Mubt(6, 9) = 30.

Recently the challenge has been taken up, and it has
been proved that the answer to the second question in
the Monotone Upper Bound Problem is “yes,” that is,
M(d, n) = Mubt(d, n) does hold,

• for small dimensions, d ≤ 4 ([Pfeifle 04]), and

• for small corank, n − d ≤ 2 ([Gärtner et al. 01]).

In the first case, an interesting aspect is that the re-
sult cannot be achieved on dual-to-cyclic polytopes; more
general dual-to-neighborly polytopes are needed. (These
had been missed by Motzkin). The key to the second re-
sult is Welzl’s concept of “extended Gale diagrams;” this
will be crucial for our work as well.

In this paper, we give a detailed analysis of some cases
of corank n−d = 3. The main result is that the answer to
the Monotone Upper Bound Problem is “no” in general:

27 ≤ M(6, 9) < Mubt(6, 9) = 30.

Our analysis depends on a combination of a number of
different techniques and results:

• Any polytope with Mubt(d, n) vertices is necessarily
simplicial dual-to-neighborly. If n = d + 3 and d is
even, then it must be dual-to-cyclic.

• The graphs G = G(Cd(n)∆) of dual-to-cyclic poly-
topes are given by Gale’s evenness criterion. For
even d, Cd(n)∆ has a dihedral symmetry group of
order 2n.

• Any linear objective function in general position in-
duces an acyclic orientation on G, which is an “Ab-
stract Objective Function” (AOF) as introduced by
Kalai, and satisfies the Holt-Klee (HK) conditions.
Moreover, in our case, it must induce (and be given
by) a directed Hamilton path in the graph.

• The symmetry classes of Hamilton paths that induce
HK-AOFs are enumerated by computer.

• In terms of Welzl’s “extended Gale diagrams,” the
realizability problem for Hamilton HK-AOFs is re-
formulated as a problem of three-dimensional Eu-
clidean geometry.

• To prove that some of the Hamilton HK-AOFs of in-
terest are indeed realizable, we use randomized gen-
eration methods.

• To prove nonrealizability of AOFs, we use a combi-
natorial technique that may be seen as an oriented
matroid version (looking at signs only) of the Farkas
lemma; to obtain short proofs, we have implemented
automatic search techniques.

Our main findings may be summarized as follows.

Theorem 1.1. Let n = d + 3, d ≥ 2. Then a d-polytope
with Mubt(d, n) vertices is necessarily dual-to-neighborly;
if d is even, then it is dual-to-cyclic. Hamilton HK-AOFs
on such polytopes can be classified as follows:
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d = 4, n = 7: There are 7 equivalence classes of Hamil-
ton HK-AOFs on the graph of C4(7)∆; exactly 4 of
them are realizable.
In particular, M(4, 7) = Mubt(4, 7) = 14. Moreover,
already for d = 4 and n = 7 there are nonrealizable
HK-AOFs. (These are the smallest possible
parameters.)

d = 5, n = 8: There are two types of simplicial dual-to-
neighborly polytopes; for the dual-to-cyclic one, real-
izable types of Hamilton HK-AOFs exist.
In particular, M(5, 8) = Mubt(5, 8) = 20.

d = 6, n = 9: There are 6 equivalence classes of Hamil-
ton HK-AOFs on the graph of C6(9)∆; none of them
are realizable.
In particular, M(6, 9) < Mubt(6, 9) = 30.

2. THE COMBINATORIAL MODEL

If a d-polytope with d + 3 vertices is supposed to have
the maximal number Mubt(d, d + 3) of facets, then it
must be simplicial and neighborly. Thus, by polarity, we
are looking at simple dual-to-neighborly d-polytopes with
d + 3 facets.

The analysis of such polytopes P is a classical appli-
cation of Gale diagrams by Perles [Grünbaum 03, Sec-
tion 6.2]. It yields that if d ≥ 2 is even, then the combi-
natorial type of P is uniquely that of the polar Cd(d+3)∆

of the cyclic d-polytope with d+3 vertices. For odd d ≥ 3,
more combinatorial types of simple polytopes exist; for
d = 3 as well as for d = 5, there is exactly one combina-
torial type in addition to the dual-to-cyclic polytope (see
[Altshuler and McMullen 73]).

The following yields our combinatorial model for the
orientations of the graph of P that may be induced by
linear objective functions (on some realization of P ):

Definition 2.1. On the graph of a simple d-polytope P ,
let O be an acyclic orientation that has a unique source
and sink.

(a) The orientation O is an AOF orientation of P if it
has a unique sink in each non-empty face of P . In
this case, O also has a unique source in each non-
empty face ([Kalai 88], [Joswig et al. 02]). The ori-
entation is then said to satisfy the AOF condition.
Any linear extension of an AOF orientation is called
an abstract objective function (AOF) on the vertices
of P .

(b) The orientation O satisfies the Holt-Klee conditions
(or is an HK orientation) if, in each k-dimensional
face of P with 3 ≤ k ≤ d, it admits k vertex-disjoint
directed paths between the unique source and sink.

(c) The orientation O is an HK-AOF orientation if it
satisfies (a) and (b) and is a Hamilton HK-AOF ori-
entation if it additionally admits a directed Hamil-
ton path from source to sink.

Any linear function in general position (that is, such that
no two vertices have the same value) induces an AOF ori-
entation on the graph of P ; any such orientation is in fact
an HK orientation ([Holt and Klee 98]). The negative of
the linear function induces the opposite AOF orienta-
tion. Any Hamilton AOF orientation induces a unique
abstract objective function.

If for some linear function on a d-polytope with
d + 3 vertices there is a monotone path through
Mubt(d, d + 3) vertices, then the polytope is simple and
dual-to-neighborly, and the linear function induces a
Hamilton HK-AOF. So, for our problem we have to enu-
merate Hamilton HK-AOFs on the graphs of dual-to-
neighborly d-polytopes with d + 3 facets, which are in
fact dual-to-cyclic in the case of even dimension.

Proposition 2.2.

(a) The graph of C4(7)∆ admits exactly 7 equivalence
classes (with respect to symmetries of C4(7)∆ and
global orientation reversal) of Hamilton HK-AOFs;
they are displayed in Figure 1.

(b) The polytope C5(8)∆ admits exactly 1298 equivalence
classes of Hamilton HK-AOFs.

(c) The polytope C6(9)∆ admits exactly 6 equivalence
classes of Hamilton HK-AOFs; they are displayed
in Figure 2.

Sketch of proof: We enumerate the symmetry classes of
directed Hamilton paths in the graph G of one of these
polytopes, but we prune the search tree whenever the
orientation induced by the partial path fails to satisfy
the AOF or Holt-Klee conditions.

As an additional pruning criterion, we keep a list LF

of all HK-AOF orientations for each k-face F of P for
some 3 ≤ k ≤ dim(P ). Whenever we try to add a new
oriented edge e to a partial Hamilton path in G, we check
in all lists {LF : e ∈ F} belonging to k-faces incident
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FIGURE 1. The Hamilton HK-AOFs of the graph G of C4(7)∆. (The graph G embeds into a Möbius strip [Haase and
Ziegler 02].) Each vertex is labeled by its set of incident facets, which corresponds to a facet of C4(7). The bold arrows
yield the monotone Hamilton paths from source to sink. An arrow v → w means that w is higher than v; so, for example,
NR4

1 corresponds to

2367 < 2356 < 3456 < 3467 < 4567 < 1457 < 1245 < 2345 < 1234 < 1347 < 1237.

NR6
1: 458 < 258 < 238 < 278 < 478 < 078 < 058 < 038 < 018 < 014 < 012 < 016 < 036 < 034 < 345 <

< 234 < 347 < 147 < 127 < 167 < 678 < 367 < 567 < 056 < 456 < 256 < 236 < 123 < 125 < 145

NR6
2: 038 < 238 < 123 < 236 < 234 < 034 < 345 < 347 < 478 < 147 < 014 < 018 < 012 < 016 < 036 <

< 367 < 167 < 678 < 567 < 056 < 256 < 456 < 145 < 458 < 058 < 258 < 125 < 127 < 278 < 078

NR6
3: 038 < 238 < 236 < 036 < 016 < 056 < 256 < 567 < 367 < 167 < 678 < 078 < 278 < 478 < 147 <

< 127 < 123 < 012 < 125 < 258 < 058 < 458 < 456 < 145 < 345 < 347 < 234 < 034 < 014 < 018

NR6
4: 038 < 238 < 236 < 036 < 016 < 056 < 256 < 567 < 367 < 167 < 678 < 278 < 078 < 478 < 147 <

< 127 < 123 < 012 < 125 < 258 < 058 < 458 < 456 < 145 < 345 < 347 < 234 < 034 < 014 < 018

NR6
5: 038 < 058 < 258 < 125 < 256 < 056 < 456 < 458 < 145 < 345 < 034 < 234 < 347 < 147 < 014 <

< 018 < 012 < 016 < 036 < 236 < 367 < 567 < 167 < 678 < 478 < 078 < 278 < 127 < 123 < 238

NR6
6: 018 < 058 < 458 < 258 < 125 < 012 < 127 < 278 < 078 < 038 < 238 < 123 < 234 < 034 < 345 <

< 347 < 478 < 147 < 014 < 145 < 456 < 256 < 236 < 036 < 367 < 678 < 567 < 167 < 016 < 056

FIGURE 2. Representatives for the six equivalence classes of Hamilton HK-AOFs on C6(9)∆. Each vertex p is given by
the three-element set Np of the indices of facets not incident to it.

to e whether there still exists an HK-AOF orientation
containing e and discard all other orientations of that
k-face.

This strategy was implemented in C++ within the
polymake programming environment by Gawrilow and
Joswig [Gawrilow and Joswig 98–03, Gawrilow and
Joswig 00]; this produced the results listed above. �

3. EXTENDED GALE DIAGRAMS

Welzl’s extended Gale diagram [Welzl 01, Gärtner
et al. 01] encodes the values of a linear objective function
on a d-dimensional polytope with n facets into an (n−d)-
dimensional diagram. For this, we start from a sequence
(w1,w2, . . . ,wn, g) of points in �d: the wi’s represent
the n facet-defining hyperplanes {x ∈ �d : wT

i x = 1},
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FIGURE 3. An instance of the extended Gale diagram. Left: A simple polytope P whose vertices are labeled with the
facets they are not incident to and the ordering 14 < 45 < 34 < 23 < 25 < 12 of the vertices induced by the linear
objective function g̃T . Middle: The simplicial polar polytope P∆, whose vertices are labeled like the corresponding facets
of P . Right: On the base line, a Gale transform of the vertices of P∆: complements of facets of P∆ correspond to positive
circuits (minimal linear dependencies) of (vert P∆)∗. Adding g̃ results in a lifting of the Gale transform such that the
intersection heights for facet complements of P∆ encode the ordering of the vertices of P by g̃T.

i ∈ {1, 2, . . . , n}, of a full-dimensional polytope P ⊂ �d

with 0 ∈ intP , and g ∈ �d encodes a linear objective
function gT ∈ (�d)∗.

With this interpretation of the input, the extended
Gale diagram produces a sequence (w∗

1,w
∗
2, . . . ,w

∗
n, g̃∗)

of n + 1 labeled vectors in �n−d that encodes both the
face lattice of P and the orientation Og of the graph of P

induced by gT . It is calculated as follows:

(1) Replace g by some positive scalar multiple g̃ = cg

such that g̃Tx < 1 for all x ∈ P ; equivalently,
g̃ ∈ int P∆.

(This step is optional, and will be modified
later. In Welzl’s original version of extended Gale
diagrams, it ensures that the “lifting heights”
defined below can be made positive.)

(2) Calculate the standard Gale transform
(w∗

1,w
∗
2, . . . ,w

∗
n, g̃∗) of the point sequence

(w1,w2, . . . ,wn, g̃).

Definition 3.1. Let P = {x ∈ �d : wT
i x ≤ 1, 1 ≤ i ≤ n}

be a polytope, let Ag = (w1,w2, . . . ,wn, g) ⊂ �d be the
sequence of its facet normal vectors augmented by g, and
let A∗

g = (w∗
1,w

∗
2, . . . ,w

∗
n, g̃∗) ⊂ �n−d be the extended

Gale diagram of this sequence, whose rows form a basis
for the space of affine dependencies among the columns
of Ag.

For every vertex p of P let Np ⊂ {1, 2, . . . , n} index
the wi that correspond to the facets of P that are not
incident to p. The intersection height zp of p is zp =
−(g̃∗)Tzp, where zp = �g̃∗ ∩ conv{w∗

i : i ∈ Np} is the
intersection point of the line �g̃∗ with the convex hull of
the w∗

i ’s indexed by Np. (See Figures 3 and 6.)

Observation 3.2. After a linear transformation we
may assume that g̃∗ = (0, 0, . . . , 0,−1). The intersection
height zp of a vertex p is then given as the last coordi-
nate of the point where the (n − d)-axis meets the affine
plane Hp through the points {w∗

i : i ∈ Np}.

Proposition 3.3. Let p and q be vertices of P . Then q is
higher than p with respect to the linear objective function
given by g,

gTp < gTq,

if and only if the intersection height of q is larger than
that of p,

zp < zq.

Example 3.4. Let P be a triangular prism in �3 (see
Figure 3, left) with n = 5 facets. The polar P∆ is the
polytope of Figure 3 (middle) with 5 vertices, and the
Gale transform of P∆ consists of 5 points in �5−3−1 =
�

1 (Figure 3, right, base line). We obtain the extended
Gale diagram in �2 by additionally encoding a linear
objective function via a level hyperplane that does not
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intersect P , which corresponds to a point in the relative
interior of P∆. Proposition 3.3 says that, in the extended
Gale diagram, the value gTp of the objective function is
encoded by the height of the intersection of �g̃∗ with
the triangle spanned by the points w∗

i that correspond
to facets of P that do not contain p.

4. FINDING REALIZATIONS

Proposition 4.1.

(a) The equivalence classes R4
1–R4

4 of Hamilton HK
AOF orientations of the graph of C4(7)∆ (as given
by Figure 1) are realizable. In particular, M(4, 7) =
Mubt(4, 7) = 14.

(b) There exist realizable Hamilton HK AOF orienta-
tions of the graph of C5(8)∆.
In particular, M(5, 8) = Mubt(5, 8) = 20.

(c) There exist realizations of C6(9)∆ with 27 vertices
on a monotone path.

Sketch of proof: The realizations in (a) and (b) were
found by the following procedure. For each polytope
P = Cd(d + 3)∆, randomly generate a Gale trans-
form G(P∆) = (v∗

1,v
∗
2, . . . ,v

∗
d+3) of P∆, and, for each

vertex p of P , express the intersection height zp as a
linear function of the lifting heights hi, where

(
w∗

i =
(v∗

i , hi) : 1 ≤ i ≤ d + 3
)

is an extended Gale transform
of P . Now check whether the linear program

zp−zq ≤ −1, for all oriented edges e = (p, q) in O,

in the variables h1, h2, . . . , hd+3 is feasible, for O, one of
the Hamilton HK AOF-orientations of P . If so, the polar
dual of the Gale transform of G(P∆) yields a realization
of the combinatorial type of P , and the lifting heights
solving the linear program yield a linear objective func-
tion that induces the orientation O on this realization. If
not, repeat.

The realizations in (c) were found by lifting ran-
domly generated instances {v∗

1 , v∗
2 , . . . , v∗9} of Gale dia-

grams of C6(9) to the rational surface h =
∏9

i=1 1/�i(x),
where �i(x) is the equation of the line �(v∗

i − v∗
i+1) for

1 ≤ i ≤ 9, where v∗
10 := v∗

1 . �

Remark 4.2. Following a suggestion of Walter Morris, we
also searched for long ascending paths on the product
P = ∆2 × ∆2 × ∆2 of three triangles. This is a simple
six-dimensional polytope with 9 facets, 27 vertices, and

81 edges. Its graph admits many Hamilton paths that
induce HK-AOF orientations (800, 928 in total, 4944 of
them beginning on a given directed edge), but we have
not been able to find realizations of P with more than
25 vertices on an ascending path.

5. PROVING NONREALIZABILITY

Our strategy for proving nonrealizability of orientations
may be summarized as follows: for each candidate orien-
tation O of the graph of a polytope P (of even dimension
d, with d+3 facets), we assume that there is a realization
of P and a linear objective function gT that induces O
on the graph of P . Each oriented edge of O then imposes
a linear inequality on the lifting heights of the extended
Gale diagram of (P, gT ). For some orientations O, a
combinatorial version of the Farkas Lemma implies that
these inequalities are inconsistent, thereby proving the
nonrealizability of O.

5.1 Inequalities Induced by Edges

We start with some notation for vector configurations
in �

2 and �
3. The shorthand [d + 3] will denote

{1, 2, . . . , d + 3}.

Convention 5.1. For i ∈ [d + 3], we write i for a vector
(xi, yi)T ∈ �2 and i⊥ for the vector (yi,−xi)T orthog-
onal to i that is obtained by rotating i in the clockwise
direction. With this convention, the following relations
hold for scalar products:

ij⊥ = xiyj − xjyi

= det(i, j)

= −det(j, i)

= −ji⊥

= −i⊥j.

We further abbreviate

ij⊥ := sign(ij⊥),

[ijk] := det
(

i j k
1 1 1

)
, and

[ijk] := sign([ijk]).

Lemma 5.2.

(a) If i, i + j, j ∈ �2 come in counterclockwise order
around 0, then ij⊥ = +.
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FIGURE 4. Deducing sign patterns.
Top: If i, i + j, j ∈ �2 come in counterclockwise order
around 0, then ij⊥ = +.
Bottom: In this situation, if [ijk] = +, then [i�j] =
[j�k] = +.

(b) If in a configuration of four vectors i, j,k, � ∈
�

2\{0} the vectors i, j,k are ordered clockwise
around 0, j ∈ relint cone(i,k), [ijk] = +, and
� ∈ relint cone(−i,−k), then [i�j] = [j�k] = +.

Convention 5.3. The vertices of Cd(d + 3) are labeled
by [d + 3] in the natural order, so that the facets are
given by certain d-subsets of [d + 3] according to Gale’s
evenness criterion. The vectors in any Gale transform
are then labeled so that 1,3,5,7, . . . ,2,4,6, . . . come
in clockwise order around the origin. We identify each
facet of Cd(d + 3) with the indices of the three vertices
it misses, so that ordering this index set yields a trian-
gle with counterclockwise orientation that encloses the
origin (see Figure 5).

Now we polarize. Correspondingly, we label each ver-
tex p of Cd(d+3)∆ by the three-element set Np of (indices
of) the facets it does not lie on.

1

3

5

7

2
4

6

FIGURE 5. A Gale transform of C4(7). The set Np =
{3, 6, 7} corresponds to the vertex p of C4(7)∆ not on
those facets, and 3 < 6 < 7 is a counterclockwise orien-
tation of the triangle 367.

Lemma 5.4. Let G(P ) be an extended Gale diagram
of P = Cd(d+3)∆, and let Np = {i, j, k} index a vertex p

of P . With the assumptions of Observation 3.2 and Con-
vention 5.1, the intersection height zp = z{i,j,k} is given
by

z{i,j,k} =
ij⊥hk + ki⊥hj + jk⊥hi

[ijk]
. (5–1)

Proof: Expand the third row of the determinant in the
equation

∣∣∣∣∣∣∣∣

0 xi xj xk

0 yi yj yk

z{i,j,k} hi hj hk

1 1 1 1

∣∣∣∣∣∣∣∣
= 0.

As a consistency check, note that (5–1) is symmetric un-
der any permutation of the indices.

By Proposition 3.3, the total ordering of the vertices p

of Cd(d+3)∆ induced by the linear objective function gT

induces a total ordering of the intersection heights zp,
that is, of the heights of the intersections of the affine
hyperplanes Hp in �3 with the z-axis. If two vertices
of Cd(d+3)∆ span an edge, then the corresponding facets
of Cd(d + 3) share a ridge, which in turn means that
the corresponding triangles have two points w∗

i and w∗
j

in common. This permits us to relate the intersection
heights of two adjacent vertices in the graph of Cd(d+3)∆

in the following way.

Lemma 5.5. Suppose that the vertices {i, j, k} and {i, j, �}
span an edge of Cd(d + 3)∆. Then the following relation
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145

125

127

456

7

1

2

6
4

5

2

4

6
1 3

5

7

h4
h5

125 < 127

145 < 125

456 < 145

FIGURE 6. Intersection heights encode values of the ob-
jective function. Suppose that the objective function g̃
orders four vertices of C4(7) by 1237 < 2367 < 3467 <
3456. Then the heights of the intersections between
�g̃∗ and the lifted triangles corresponding to the com-
plements of these labels are ordered z456 < z145 < z125 <
z127.

holds between the corresponding intersection heights:

z{i,j,k} − z{i,j,�} =
(ij⊥)[jk�]
[ijk][ij�]

hi +
(ij⊥)[ki�]
[ijk][ij�]

hj

+
ij⊥

[ijk]
hk +

−ij⊥

[ij�]
h�.

If [ijk] = [ij�], then the signs of the coefficients of the
h’s are, in this order,

(ij⊥)[jk�], (ij⊥)[ki�], +, and − .

Proof: The first statement follows via direct calculation
from (5–1), using the straightforward identity

(ij⊥)(k�⊥) = (�i⊥)(jk⊥) + (j�⊥)(ik⊥).

The second statement is a consequence of Lemma 5.2 and
Convention 5.3.

5.2 Contradictions via a Combinatorial Farkas Lemma

We will use a combinatorial version of the following
Farkas Lemma [Schrijver 86, Section 7.8]:

Lemma 5.6. For any matrix A ∈ �m×d, exactly one of
the following is true:

• There exists an h ∈ �d such that Ah < 0.

• There exists a c ∈ �m such that c ≥ 0, cTA = 0,
and c �= 0.

Given a d-dimensional polytope P with d + 3 facets
and an orientation O on P ’s graph G, we assume that we
have a realization of P and a linear objective function gT

that induces O on G. We would like to apply Lemma 5.6
to prove the infeasibility of the system Ah < 0 of m =
# edges of Cd(d + 3)∆ = 1

4

(
d+4
3

)
linear inequalities on

the lifting heights h1, h2, . . . , hd+3 given by

z{i,j,k} − z{i,j,�} < 0 for all oriented edges

({i, j, k}, {i, j, �}) of O.
(5–2)

However, the only information we have available about A

are sign patterns of determinants as given by Lemma 5.5.
Therefore, to show infeasibility of (5–2), we must produce
a Farkas certificate c that shows already at the level of
signs (“using only oriented matroid information”) that
some positive combination of the rows of A sums to zero.

Proposition 5.7. The orientation

NR4
1 : z145 < z147 < z127 < z125 < z123 < z236

< z234 < z345 < z347 < z367 < z167

< z567 < z256 < z456

of the graph of C4(7)∆ is not realizable.

Proof: We abbreviate ‘z{i,j,k} < z{i,j,�}’ by ‘ijk < ij�’.
To any extended Gale diagram corresponding to a re-

alization of NR4
1 we may apply an affine transformation

that fixes the z-axis and moves the plane spanned by
w∗

3,w
∗
4, and w∗

5 to the �2-plane given by z = 0; that is,
we may assume that h3 = h4 = h5 = 0. This affine trans-
formation does not change the projection along the z-
axis, which still yields the same Gale transform of C4(7).
The resulting configuration is the extended Gale diagram
for C4(7)∆ with the objective function g̃ = cg scaled such
that the level hyperplane g̃Tx = 1 contains p = {3, 4, 5}.
Thus, at this point we have modified Step (1) in the con-
struction of Section 3.

We proceed to write down the sign patterns of the
inequalities Ah < 0 for h = (h1, h2, h6, h7) implied by
Lemmas 5.4 and 5.5:

h1 h2 h6 h7 i j k �
567 < 256: 0 − −[257] + 5 6 7 2
234 < 345: 0 + 0 0 3 4 2 5
345 < 456: 0 0 − 0 4 5 3 6
345 < 347: 0 0 0 − 3 4 5 7
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If [257] = − or [257] = 0, we can find a positive com-
bination of the rows of this matrix that sums to zero,
regardless of the actual values of the entries. Therefore,
[257] = + in any realization of NR4

1. By Lemma 5.2, we
deduce that, therefore, [157] = −.

Now consider the rows
h1 h2 h6 h7 i j k �

127 < 125: −[257] = − [157] = − 0 + 1 2 7 5
145 < 345: + 0 0 0 4 5 1 3
234 < 345: 0 + 0 0 3 4 2 5
345 < 347: 0 0 0 − 3 4 5 7 ,

which admit a positive combination that sums to zero
and, therefore, prove the nonrealizability of the orienta-
tion NR4

1.

Remark 5.8. Proposition 5.7 provides an example of a
nonrealizable abstract objective function that satisfies
the Holt–Klee conditions, on a simple 4-polytope with
only 7 facets. The first examples for this were obtained
on a 7-dimensional polytope with 9 facets, by Gärtner et
al. [Gärtner et al. 01]; Morris [Morris 02] obtained exam-
ples on the 4-cube (with 8 facets). No such examples of
dimension d ≤ 3 exist ([Mihalisin and Klee 00]).

Proposition 5.9. No Hamilton HK-AOF of C6(9)∆ is re-
alizable.

Proof: The reasoning is analogous to the proof of Propo-
sition 5.7; we will give the details only for NR6

1, and
sketch the proof for the rest of the orientations.

Suppose that we are given a realization of the poly-
tope C6(9)∆ along with a linear objective function that
induces NR6

1 on its graph. After an affine transforma-
tion of the extended Gale diagram, we may suppose that
h3 = h4 = h5 = 0, where we consider the lifting heights
numbered as h0, h1, . . . ,h8.

Now consider the rows
h0 h1 h2 h6 h7 h8 i j k �

567 < 056: − 0 0 −[057] + 0 5 6 7 0
034 < 345: + 0 0 0 0 0 3 4 0 5
345 < 456: 0 0 0 − 0 0 4 5 3 6
345 < 347: 0 0 0 0 − 0 3 4 5 7 ,

from which we deduce, as above, that [057] = +; and,
via Lemma 5.2, that [578] = −. But, now we reach a
contradiction via

h0 h1 h2 h6 h7 h8 i j k �

078 < 058: [578] = − 0 0 0 + −[057] = − 0 8 7 5
034 < 345: + 0 0 0 0 0 3 4 0 5
345 < 347: 0 0 0 0 − 0 3 4 5 7
458 < 345: 0 0 0 0 0 + 4 5 8 3 ,

which proves the claim. Some “good” sets of vanishing
heights for the remaining orientations are as follows:

Orientation: NR6
2 NR6

3 NR6
4 NR6

5 NR6
6

Height indices: 0,1,2 0,5,6 0,5,6 0,1,6 0,1,2

This concludes the proof.

Proposition 5.10. The Hamilton HK-AOFs NR4
2 and

NR4
3 are not realizable.

Proof: The method used in the proof of Propositions 5.7
and 5.9 does not directly apply here, as no choice of van-
ishing heights immediately yields a Farkas contradiction
for these orientations. Therefore, we prove the nonreali-
zability of NR4

2 in the following way:
Suppose that in a realization of NR4

2, we have [136] =
+, and therefore [137] = − by Lemma 5.2. This leads
to a contradiction by the following table for h1 = h4 =
h5 = 0:

h2 h3 h6 h7

367 < 167: 0 + −[137] = + [136] = +
145 < 345: 0 − 0 0
145 < 456: 0 0 − 0
145 < 147: 0 0 0 −

We deduce that [136] = − or [136] = 0 must hold in any
realization of NR4

2. But, setting h2 = h3 = h6 = 0 then
yields the following table,

h1 h4 h5 h7

367 < 167: − 0 0 [136]
123 < 236: + 0 0 0
367 < 236: 0 0 0 + ,

and a global contradiction.
The same argument proves that NR4

3 is nonrealizable.
The only difference between this orientation and NR4

2 is
that 345 < 347 in NR4

3, whereas 347 < 345 in NR4
2, but

the proof of the nonrealizability of NR4
2 did not use this

inequality.

Remark 5.11. The short nonrealizability proofs above
were found by computer, though they can be checked
by hand. Propositions 5.7 and 5.9 were found by try-
ing to eliminate signs from all minors of A obtained by
successively deleting triples of columns, while the proof
of Proposition 5.10 was obtained by moreover assuming
various signs to be positive resp. negative. We presented
instances of the shortest proofs found.
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6. SUMMARY AND OPEN PROBLEMS

Our strategy for proving bounds on M(d, n) depends on
combining theoretical concepts with computer genera-
tion/enumeration. For lower bounds on M(d, n), we use

(1) information on the combinatorial type of a candi-
date polytope—e.g., the combinatorial type of a six-
dimensional 9-facet polytope with maximally many
vertices is uniquely that of C6(9)∆;

(2) reduction of the dimension via extended Gale
diagrams—to dimension 3 in the case of C6(9)∆; and

(3) random generation of instances of the extended Gale
diagram, and finding the longest ascending path on
the induced orientation (this step involves the com-
puter).

Our proof of the upper bound M(6, 9) < 30 uses (1), (2),
and additionally

(4) the Holt-Klee and AOF properties of orientations
induced by linear functions;

(5) exhaustive enumeration (up to symmetry) of all ori-
entations that admit a Hamilton path and satisfy
the HK and AOF conditions;

(6) a combinatorial version of the Farkas Lemma; and

(7) computer assistance to find short nonrealizability
proofs.

Step (5) of our present proof depends crucially on com-
puter assistance. Finding short proofs in step (7) also re-
quires computer assistance, but the result can be checked
by hand.

Our methods were successful for small dimensions and
coranks, but they do not yield (non)existence statements
or asymptotics for large d and n− d. Thus, we leave the
following problems open for now:

• Does Cd(d + 3)∆ have any Hamilton HK AOFs for
even d > 6? If not, this would give a purely combi-
natorial proof that, for some parameters, M(d, n) <

Mubt(d, n).

What happens for odd d ≥ 7?

• Is it true that M(d, n) � Mubt(d, n) for large
n ≥ d + 3, d ≥ 6?

To demonstrate that the gaps in our asymptotic
knowledge are substantial, we note that in the “diago-
nal” case of n = 2d all we know is

5
4 2d ≤ M(d, 2d) ≤ Mubt(d, 2d) ≈ 2.6d.

(The lower bound follows from M(4, 8) = 20 by taking
deformed prisms.)
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