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We present an algorithm to compute values L(s) and derivatives
L(k)(s) of L-functions of motivic origin numerically to required
accuracy. Specifically, the method applies to any L-series whose
Γ-factor is of the form As ∏d

i=1 Γ(
s+λj

2
) with d arbitrary and

complex λj , not necessarily distinct. The algorithm relies on the
known (or conjectural) functional equation for L(s).

1. INTRODUCTION

Many L-series in number theory and algebraic geome-
try can be interpreted as L-series of motives over num-
ber fields. For instance, Riemann and Dedekind ζ-
function, Dirichlet and Artin L-series, and L-series of
elliptic curves are of this kind. They are all of the form
L(X,V, s) associated to V = Hi(X) or a “motivic” sub-
space V ⊂ Hi(X) of a projective algebraic variety X/K.

Given such series,

L(s) =
∞∑

n=1

an

ns
, where Re s >> 1, (1–1)

standard conjectures state that L(s) extends to a mero-
morphic function on the whole of C and satisfies a func-
tional equation of a predicted form. The Riemann hy-
pothesis tells where the zeroes of L(s) are supposed to be
located, and numerous conjectures relate values of L(s)
at integers to arithmetic invariants of X. The Birch-
Swinnerton-Dyer [Birch and Swinnerton-Dyer 63], Za-
gier [Zagier 91], Deligne-Beilinson-Scholl [Beilinson 86,
Scholl 91], and Bloch-Kato [Bloch and Kato 90] conjec-
tures are examples of these.

While the aforementioned conjectures remain un-
proved in the vast majority of cases, a lot of work
has been done to provide numerical evidence for some
of them in low-dimensional cases. This applies espe-
cially to the Riemann hypothesis for the Riemann ζ-
function [van de Lune et al. 86], Dirichlet and Artin
L-series [Davies and Haselgrove 61, Keiper 96, Lagarias
and Odlyzko 79, Rubinstein 98, Tollis 97], and L-series
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L(E,H1, s) of elliptic curves [Fermigier 92]. Other well-
studied cases are the Birch-Swinnerton-Dyer conjecture
[Birch and Swinnerton-Dyer 63, Buhler et al. 85] for
L(E,H1, s)|s=1 where E/Q is an elliptic curve as well as
various computations for modular forms and their sym-
metric powers.

To perform this kind of calculations one needs an effi-
cient algorithm to compute numerically to required pre-
cision L(s) (or, more precisely, its analytic continuation)
for a given complex s. Such algorithms are usually based
on writing L(s) as a series in special functions associated
to the inverse Mellin transform of the Γ-factor of L(s).
In the cases mentioned above these special functions are
incomplete Gamma functions for dimV = 1 (Riemann
ζ-function, Dirichlet characters) and incomplete Bessel
functions for dimV = 2 (modular forms, elliptic curves).

In higher-dimensional cases (dim V > 2) the situa-
tion is somewhat complicated by the fact that the spe-
cial functions in question are rather general Meijer G-
functions. It is possible to compute them using expan-
sions at the origin but the resulting scheme is not very
efficient due to cancellation problems. See Cohen’s ex-
position in [Cohen 00, Section 10.3], which is based es-
sentially on the work of Lavrik [Lavrik 68] and Tollis
[Tollis 97].

The goal of this paper is threefold. First, we deduce
analogous formulae to cover derivatives of L-functions.
Second, for the special functions in question, we deduce
asymptotic expansions at infinity and the form of the as-
sociated continued fraction expansions. Using these re-
sults, we construct an empirical but efficient algorithm to
compute arbitrary motivic L-functions and their deriva-
tives. Finally, we discuss L-functions with partially un-
known invariants.

The scheme presented here was implemented as a
PARI script [Dokchitser 02]. For an arbitrary motivic L-
series for which meromorphic continuation and the func-
tional equation are assumed, the algorithm numerically
verifies the functional equation and allows one to com-
pute the values L(s) and derivatives L(k)(s) for complex
s to predetermined precision. (The formulae described
in the present paper can be used in any other environ-
ment that provides arbitrary precision arithmetic, com-
plex numbers, Laurent series and the Taylor series expan-
sion of the Γ-function.) The above PARI implementation
also includes examples of computations with Riemann
ζ-function, Dirichlet L-functions, Dedekind ζ-function,
Shintani’s ζ-function, L-series of modular forms, and
those associated to curves C/Q of genus 1, 2, 3, and 4.

The structure of the paper is as follows. In Section 2
we start with generalities on the invariants of L-functions
and outline the algorithm. In Section 3 we deduce power
series expansions of general Meijer G-functions required
in the computations. Our approach here is standard
and has been used in most of the algorithms to com-
pute L-functions (e.g., [Lagarias and Odlyzko 79, Ru-
binstein 98, Tollis 97, van de Lune et al. 86]). These
two sections are only included for the sake of complete-
ness and to set up the notation. In Section 4 asymptotic
expansions at infinity of the same special functions and
associated continued fraction expansions are presented.
Then, Section 5 summarises the algorithm and addresses
implementation and accuracy issues. Finally, Section 6
contains some remarks on working with L-functions for
which not all of the invariants are known.

2. MOTIVIC L-FUNCTIONS

Suppose we are given an L-series,

L(s) =
∞∑

n=1

an

ns
, with an ∈ C .

We make the following three assumptions on L(s):

Assumption 2.1. The coefficients of L(s) grow at most
polynomially in n, that is an = O(nα) for some α > 0.
Equivalently, the defining series for L(s) converges for
Re s sufficiently large.

Assumption 2.2. The series L(s) admits a meromorphic
continuation to the entire complex plane. There exist
weight w ≥ 0, sign ε = ±1, real positive exponential
factor A, and the Γ-factor

γ(s) = Γ
(s+λ1

2

)
· · ·Γ

(s+λd

2

)
of dimension d ≥ 1 and with Hodge numbers λ1, . . . λd ∈
C, such that

L∗(s) = As γ(s) L(s)

satisfies a functional equation1

L∗(s) = ε L∗(w−s) . (2–1)

Assumption 2.3. The function L∗(s) has finitely many
simple poles pj with residues rj = ress=pj

L∗(s) and no
other singularities.

1Functional equation may also involve two different L-functions,
see Remark 2.7.
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L(s) Description w d (λj) N ε (pj)

ζ(s) Riemann ζ-function 1 1 (0) 1 1 (0,1)

L(χ, s)
L(χ̄, s)

χ primitive Dirichlet
character mod N

1 1 (0), χ(−1)=1
(1), χ(−1)=−1

N |ε| = 1

ζ(F, s) Dedekind ζ-function
[F : Q] = d

1 d (0,. . . ,0,1,. . . ,1)
d−σ, σ times

|∆F | 1 (0,1)

L(f, s) f modular form
of weight k on SL2(Z)

k 2 (0, 1) 1 (−1)k (0,k)

L(f, s) f cusp form
of weight k on SL2(Z)

k 2 (0, 1) 1 (−1)k

L(f, s) f Hecke cusp form
of weight k on Γ0(N)

k 2 (0, 1) N ±1

L(E, s) E/Q elliptic curve
of conductor N

2 2 (0, 1) N ±1

L(C, s) C/Q genus g curve
of conductor N

2 2g (0,. . . ,0,1,. . . ,1)
g, g times

N ±1

ζSh(s) Shintani’s ζ-function 1 4 (0, 1, 1
6
,− 1

6
) 2433 1 (0, 1

6
, 5

6
, 1)

TABLE 1.

Remark 2.4. Even for motivic L-functions of general kind
the parameters can often be restricted further. Usually,
an lie in the ring of integers of a fixed number field (most
often Z), A =

√
N/πd/2 (with conductor N ∈ Z), and

λk are integers (or even λk ∈ {0, 1}). Moreover, L∗(s) is
usually entire, and there is a product formula for L(s).
However, these additional assumptions do not simplify
our algorithm. At the same time, there are some L-
functions not of motivic origin (e.g., Shintani’s ζ-function
[Shintani 72]) to which the algorithm still applies, so we
do not require more than stated above. The assumption
that the poles of L∗(s) are simple is not essential either
(see discussion below).

Example 2.5. Table 1 contains some well-known exam-
ples of L-series satisfying our assumptions and their basic
invariants. For every one of these L-functions, the expo-
nential factor is of the form A =

√
N/πd/2 with N ∈ Z.

In the second row, L(χ, s) satisfies a functional equa-
tion that involves the “dual” L-function associated to
the complex conjugate character L(χ̄, s) (see Remark 2.7
below). In the third row, ∆F is the discriminant of F/Q

and σ is the number of pairs of complex embeddings.
For the latter (non-motivic) example see Shintani’s

original paper [Shintani 72]. For all the rest (and
other motivic examples) see [Manin and Panchishkin 95],
Chapter 4 and articles in [Janssen et al. 94] for references
and additional information. For actual L-series compu-
tations in the above cases, see [Dokchitser 02].

Given an L-function that satisfies Assumptions 2.1–
2.3, we would like to

(a) give a numerical verification of the functional equa-
tion for L(s),

(b) determine the kth derivative L(k)(s0) to necessary
precision for a given s0 ∈ C and an integer k ≥ 0.

To this end define φ(t) to be the inverse Mellin transform
of γ(s), that is

γ(s) =
∫ ∞

0

φ(t) ts
dt

t
. (2–2)

Henceforth, we let s denote a complex number and t a
positive real (and not Im s as is sometimes customary!).
The function φ(t) exists (for real t > 0 that is) and decays
exponentially for large t (see Section 3). In particular,
the following sum converges exponentially fast:

Θ(t) =
∞∑

n=1

an φ(nt

A
) . (2–3)

This function is defined so that L∗(s) becomes the Mellin
transform of Θ(t),

∫ ∞

0

Θ(t) ts
dt

t
=

∫ ∞

0

∞∑
n=1

an φ(nt

A
) ts

dt

t

=
∞∑

n=1

an

∫ ∞

0

φ(nt

A
) ts

dt

t

=
∞∑

n=1

an

∫ ∞

0

φ(t)(At

n
)s dt

t

= As
∞∑

n=1

an

ns
γ(s) = L∗(s) .

(2–4)
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By the Mellin inversion formula,

Θ(t) =
1

2πi

∫ c+i∞

c−i∞
L∗(s)t−sds, with Re c � 1,

if c ∈ C is chosen to lie to the right of the poles of L∗(s).
By the assumed functional equation (2–1) for L∗(s),

Θ(1/t) =
∫ c+i∞

c−i∞
L∗(s) tsds

= tw
∫ c+i∞

c−i∞
εL∗(w − s)ts−wds

= twε

∫ w−c+i∞

w−c−i∞
L∗(s)t−sds .

This is almost an expression for ε twΘ(t) except that the
integration path lies to the left of the poles of L∗(s).
Shifting this path to the right, we pick up residues of
L∗(s)t−s at the poles of L∗(s). Consequently, Θ(t) enjoys
the functional equation

Θ(1/t) = ε twΘ(t) −
∑

j

rjt
pj . (2–5)

Note that the assumption that L∗(s) has simple poles is
inessential. If the poles are of higher order, the residues
of L∗(s)t−s also involve some log t-terms. Then (2–5) and
(2–9) below have extra terms, but this does not affect the
reasoning elsewhere.

In Section 3 and Section 4 we describe how to compute
φ(t) for t > 0 for a given Γ-factor γ(s). Then, Θ(t)
can be also effectively computed numerically since (2–3)
converges exponentially fast.

Now we are ready to answer the first question, that
of numerical verification of the functional equation for
L∗(s). Pick t > 0 and check that (2–5) holds numerically
for this t. In fact, (2–5) holds for all t if and only if the
functional equation (2–1) is satisfied. Note that having
such a verification is useful when not all of the invariants
of L(s) are known (see Section 5).

Example 2.6. Let L(s) = ζ(s) =
∑∞

n=1 n−s be the Rie-
mann ζ-function. Then,

an ≡ 1, w = 1, ε = 1, A = 1√
π
, d = 1, and γ(s) = Γ( s

2
).

We have

φ(t) = 2e−t2 and Θ(t) =
∞∑

n=1

2e−πn2t2 .

The function L∗(s) has simple poles at p1 = 0 and p2 = 1
with residues r1 = 1 and r2 = −1, so the functional

equation for Θ(t) reads

Θ(1/t) = t Θ(t) − 1 + t . (2–6)

In fact, applying Poisson’s summation formula to f(x) =
e−πx2

gives (2–6) and this proves the functional equation
for ζ(s).

We now proceed to the second problem, that of com-
puting L(s) and L(m)(s). Fix s ∈ C and let

Gs(t) = t−s

∫ ∞

t

φ(x) xs dx

x
, for t > 0 . (2–7)

Thus, tsGs(t) is the incomplete Mellin transform of φ(t),
and limt→0 tsGs(t) = γ(s) is the original Γ−factor. As
in the case of φ(t), the function Gs(t) decays exponen-
tially with t and can be effectively computed numerically
(Sections 3 and 4).

Consider (2–4), which expresses L∗(s) as the Mellin
transform of Θ(t). Split the integral into two and apply
the functional equation (2–5) to the second one:

L∗(s) =
∫ ∞

0

Θ(t) ts
dt

t
=

∫ ∞

1

+
∫ 1

0

=
∫ ∞

1

Θ(t) ts
dt

t
+

∫ ∞

1

Θ(1/t)t−s dt

t

=
∫ ∞

1

Θ(t) ts
dt

t
+

∫ ∞

1

εtwΘ(t)t−s dt

t

−
∫ ∞

1

∑
j

rjt
pj t−s dt

t

=
∫ ∞

1

Θ(t) ts
dt

t
+ ε

∫ ∞

1

Θ(t)tw−s dt

t

+
∑

j

rj

pj − s
.

(2–8)

By definition of Θ(t) and Gs(x), the first integral can be
rewritten:∫ ∞

1

Θ(t) ts
dt

t
=

∫ ∞

1

∞∑
n=1

an φ(nt

A
)ts dt

t

=
∞∑

n=1

an

∫ ∞

1

φ(nt

A
)ts dt

t

=
∞∑

n=1

an

∫ ∞

n/A

φ(t)
(

At

n

)s dt

t

=
∞∑

n=1

anGs(
n

A
) .

The same applies to the second integral if s is replaced
by w − s, and (2–8) becomes

L∗(s) =
∞∑

n=1

anGs(
n

A
) + ε

∞∑
n=1

anGw−s(
n

A
) +

∑
j

rj

pj − s
.
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This formula allows one to determine L∗(s), and hence
L(s) = L∗(s)/γ(s), for a given s ∈ C. Differentiating the
above equation produces the formula for derivatives,

∂k

∂sk
L∗(s) =

∞∑
n=1

an
∂k

∂sk
Gs(

n

A
)

+ ε

∞∑
n=1

an
∂k

∂sk
Gw−s(

n

A
) +

∑
j

k! rj

(pj − s)k+1
. (2–9)

It remains to explain how to compute the functions φ(t)
and ∂k

∂sk Gs(t). This is the content of the next three sec-
tions.

Remark 2.7. We assumed that the functional equation
(2–1) involves L∗(s) both on the left-hand and on the
right-hand side. In fact, for arbitrary motives the func-
tional equation may be of a more general form,

L∗(s) = ε L̂∗(w−s) ,

where

L(s) =
∞∑

n=1

an

ns
, L̂(s) =

∞∑
n=1

ân

ns

are L-functions of “dual” motives. For instance, Dirichlet
L-series associated to non-quadratic characters are of this
nature. The sign ε is then an algebraic integer of absolute
value 1. Clearly, our arguments go through in this more
general case as well. The result is that (2–5) and (2–9)
have to be simply replaced by

Θ(1/t) = ε twΘ̂(t) −
∑

j

r̂jt
pj

and

∂k

∂sk
L∗(s) =

∞∑
n=1

an
∂k

∂sk
Gs(

n

A
)

+ ε

∞∑
n=1

ân
∂k

∂sk
Ĝw−s(

n

Â
) +

∑
j

k! r̂j

(p̂j − s)k+1
.

Here, Â, p̂j , etc. are associated to L̂(s) as A, pj , etc. are
to L(s).

3. COMPUTING φ(t) AND ∂k

∂sk Gs(t) FOR t SMALL

Recall that

γ(s) = Γ
(s+λ1

2

)
· · ·Γ

(s+λd

2

)
(3–1)

and that φ(t) is defined as the inverse Mellin trans-
form of γ(s). By the Mellin inversion formula (see e.g.,

[Braaksma 64, Section 2]), φ(t) is given by the residue
sum

φ(t) =
∑
z∈C

ress=z γ(s)t−s, for t > 0 . (3–2)

Since Γ(s) has simple poles at zero and negative integers,
the function γ(s) has a pole at s ∈ C if and only if s =
−λj − 2n for some j and an integer n. If λj − λk �∈ 2Z

for j �= k, then all poles of γ(s) are simple and

ress=−λj−2n(γ(s)t−s) =

2
(−1)n

n!
tλj+2n

∏
k �=j

γ( (−λj−2n)+λk

2 ) .

Hence, in this case (3–2) is of the form
∑

j tλj pj(t2) where
pj(t) is a power series in t. The coefficients of pj(t) satisfy
a simple linear recursion coming from the relation Γ(s +
1) = sΓ(s).

Example 3.1. Let d = 1 and let λ1 be arbitrary. Then,
φ(t) is given by

φ(t) = tλ1

∞∑
n=0

2
(−1)n

n!
t2n = 2 tλ1 e−t2 .

In general, the poles of γ(s) are not simple and the
residue of γ(s)t−s at s = z is t−z times a polynomial
in ln t of the corresponding degree. The reason is that
nonconstant terms of the Taylor expansion of t−s at
s = z,

t−s = t−z
∞∑

k=0

(− ln t)k

k!
(s − z)k ,

contribute to the residue in the case of a multiple pole. So
(3–2) is again of the form

∑
j tλj pj(t2), except now pj(t)

is a power series in t whose coefficients are polynomials
in ln t of a fixed degree depending on j.

Example 3.2. Let d = 2 and λ1 = λ2 = 0. Then φ(t) is a
Bessel function,

φ(t) = 4K0(2t) = −4(ln t+γe)

− 4(ln t−1+γe)t2 − 2 ln t−3+2γe

2 t4 + . . . ,

with γe =−Γ′(1) the Euler constant.

Algorithm 3.3. (Expansion of φ(t) for t small.) The
recursions necessary to determine the coefficients of
(3–2) for a general Γ-factor γ(s) are as follows.

1. Let γ(s) and φ(t) be defined by (3–1) and (3–2),
respectively.
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2. We say that λj and λk are equivalent if λj−λk ∈ 2Z.
Let Λ1, ...,ΛN denote the equivalence classes and let

j = |Λj |. Thus,

∑

j = d.

3. Let mj = −λkj
+ 2, where λkj

∈ Λj is the element
with the smallest real part, that is infλ∈Λj

Re λ =
Re λkj

. In other words, γ(s) is analytic at s = mj ,
has a pole of some order at s = mj − 2, and has a
pole of order 
j at s = mj − 2n for n � 1.

4. Let c
(0)
j (s) be the beginning of the Taylor series of

γ(s+mj) around s = 0 with O(s�j ) as the last term.

5. For 1 ≤ j ≤ d and n ≥ 1, define c
(n)
j (s) recursively

by

c
(n)
j (s) = c

(n−1)
j (s)/

d∏
k=1

( s+λk+mj

2 − n) (3–3)

considered as a quotient of Laurent series in s = 0.
Note that c

(n)
j (s) terminates at O(1) for n � 1. Let

c
(n)
j,k denote the coefficient of s−k in c

(n)
j (s).

6. For t real positive, φ(t) is given by

φ(t) =
N∑

j=1

t−mj

∞∑
n=1

(�j−1∑
k=0

(− ln t)k

k! c
(n)
j,k+1

)
t2n . (3–4)

Remark 3.4. The above series converges exponentially
fast since

max
j≤N,k≤�j

|c(n)
j,−k| = O((n!)−d) as n → ∞ .

Nevertheless, this is not an efficient way to compute
φ(t) for large t. Take for instance the series e−t =∑∞

n=0(−t)n/n! for t = 50. The terms grow up to 3×1020

for n = 50 before starting to tend to 0. Thus, to de-
termine e−50 to 10 decimal digits with this series, one
has to require working precision of 30 digits and compute
160 terms until everything happily cancels, producing the
answer 0.0000000000. This is clearly not too efficient a
procedure. As this is exactly the general behaviour for ar-
bitrary γ(s), for large t we use instead a different method
based on asymptotic expansions at infinity as described
in Section 4 below.

As explained in Section 2, we also need means for com-
puting the incomplete Mellin transform of φ(t) and its
derivatives. Recall that for s ∈ C and t > 0 we defined
Gs(t) to be

Gs(t) = t−s

∫ ∞

t

φ(x)xs dx

x
.

Recall also that limt→0 tsGs(t) exists and equals γ(s)
whenever s is not a pole of γ(s). For such s clearly

ts Gs(t) = γ(s) −
∫ t

0

φ(x)xs dx

x
. (3–5)

Since (3–4) expresses φ(t) as an infinite sum of terms
of the form tα(ln t)β , term by term integration of
(3–5) results in a similar expression for Gs(t).

In the points where γ(s) does have a pole, the formula
(3–5) makes no sense as the right-hand side becomes ∞−
∞. However, it is not difficult to locate the terms that
contribute to the principal parts of the Laurent series.
Ignoring these terms then gives the value of Gs(t) for
such s. Note that there could be numerical problems in
using (3–5) close to (but not exactly at) a pole of γ(s).

Algorithm 3.5. (Expansion of ∂k

∂sk Gs(t) for t small.) All
this is summarised in the following formulae which allow
us to determine ∂k

∂sk Gs(t) for arbitrary s ∈ C and t > 0.
Here α ∈ C and i, j, k ≥ 0 and n ≥ 1 are integers.

1. Let c
(n)
j,i be as in (3–3).

2. Define Lα,j,k(x) ∈ C[x] by the formula

Lα,j,k(x) =
{

k!
∑j−1

i=0

(
i−j
k

)
αi−j−k

i! (−x)i, α �= 0,
0, α = 0.

3. Let

S
(n)
j,k,s(x) =

�j∑
i=1

c
(n)
j,i L2n+s−mj ,i,k(x) ∈ C[x] .

4. For t > 0 consider the infinite sum

G̃s,k(t) =
N∑

j=1

t2−mj

∞∑
n=1

S
(n)
j,k,s(ln t) t2n . (3–6)

5. The formula for ∂k

∂sk Gs(t) reads

∂k

∂sk
Gs(t) =

( ∂k

∂Sk

γ(S)
tS

)∗

S=s
− G̃s,k(t) ,

where f(S)∗S=s denotes the constant term a0 of the
Laurent expansion

∑
k ak(S − s)k of f(S) at S = s.

Thus f(S)∗S=s = f(s) if f(S) is analytic at S = s.

Remark 3.6. The series for ∂k

∂sk Gs(t) converges exponen-
tially fast since the corresponding one for φ(t) does (see
Remark 3.4). Again, however, it is inefficient for large t

in which case we use an alternative approach described
in the following section.
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4. COMPUTING φ(t) AND ∂k

∂sk Gs(t) FOR t LARGE

To compute φ(t) and Gs(t) for large t, we begin with the
asymptotic expansions of these functions at infinity.

Recall that φ(t) is defined as the inverse Mellin trans-
form of a product of Γ-functions,

Γ
(s+λ1

2

)
· · ·Γ

(s+λd

2

)
=

∫ ∞

0

φ(t) ts
dt

t
.

In other words, φ(t) is a special case of Meijer G-function.
Given two sequences of complex parameters,

a1, . . . , an, an+1, . . . ap and b1, . . . , bm, bm+1, . . . bq ,

a general Meijer G-function Gm,n
p,q (t; a1, ..., ap; b1, ..., bq) is

defined by∫ ∞

0

Gm,n
p,q (t; a1, ..., ap; b1, ..., bq) ts

dt

t
=∏m

j=1 Γ(bj +s)
∏n

j=1 Γ(1−aj−s)∏q
j=m+1 Γ(1−bj−s)

∏p
j=n+1 Γ(aj +s)

.

We refer to Luke [Luke 69, Sections 5.2–5.11], for basic
properties of the G-function.

In our case replacing s by s/2 yields an identification

φ(t) = 2 Gd,0
0,d(t

2; ;
λj

2
) .

As discovered by Meijer (in greater generality), the func-
tion Gd,0

0,d possesses the following asymptotic expansion
at infinity ([Luke 69, Theorem 5.7.5]):

Gd,0
0,d(t; ;

λj

2
) ∼ (2π)(d−1)/2

√
d

e−d t1/d

tκ/d
∞∑

n=0

Mn t−n/d ,

κ = (1 − d +
d∑

j=1

λj)/2 . (4–1)

Here, Mn = Mn(λ1, ..., λd) are constants, M0 = 1. As
for φ(t), we have

φ(td/2) ∼ 2(2π)(d−1)/2
√

d
e−d t tκ

∞∑
n=0

Mn t−n . (4–2)

We would like to note here that the stated asymptotic
expansion for large t is much “neater” than the expansion
(3–4) for φ(t) for small t: it involve no logarithmic terms
and its shape is independent of whether any of the λj are
equal modulo 2Z.

The coefficients Mn in the asymptotic expansion (4–2)
can be found as follows. The defining relation

γ(s + 2) = γ(s) ×

d∏
j=1

s + λj

2

at the level of inverse Mellin transforms is equivalent to
an ordinary differential equation (of degree d) with poly-
nomial coefficients for φ(t). It follows that the function
t−κedtφ(td/2) satisfies a different ODE, of degree d + 1.
Formally, substituting 1 +

∑
n≥1 Mnt−n as a solution

gives a recursion for the Mn with polynomial coefficients.
This has been worked out in general by E. M. Wright; for
deatils see Luke [Luke 69, Section 5.11.5], especially for-
mulae (8) and (16).

Algorithm 4.1. (Asymptotic expansion associated to
φ(t).) Here is the answer in our case, rewritten in a
slightly different polynomial basis.

1. Let Sm = Sm(λ1, ..., λd) denote the mth elementary
function of λ1, ..., λd,

S0 = 1, S1 =
d∑

j=1

λj , . . . , Sd =
d∏

j=1

λj .

2. Define also modified symmetric functions Sm by

S̃m =
m∑

k=0

(−S1)kd m−1−k
(

k+d−m
k

)
Sm−k,

for 0 ≤ m ≤ d , S̃d+1 ≡ 0 .

3. For k ≥ 0 define ∆k(x) ∈ Q[x] by means of the
generating function( sinh t

t

)x

=
∞∑

k=0

∆k(x)t2k .

4. For p ≥ 1 consider the following polynomials:

νp(n) = − d

(2d)p

p∑
m=0

S̃m

p−1∏
j=m

(d − j)

� p−m
2 �∑

k=0

(2n−p+1)p−m−2k

(p−m−2k)! ∆k(d − p) .

5. The coefficients Mn in the asymptotic expansion
(4–2) satisfy a recursion

Mn =

⎧⎨
⎩

0, n < 0,
1, n = 0,
1
n

∑d
p=1 νp(n)Mn−p, n ≥ 1.

Applying term-wise integration to (4–2), it is also easy
to deduce the asymptotic expansion of Gs(t) for t → ∞,

Gs(td/2) ∼ (2π)(d−1)/2
√

d
e−d t tκ−1

∞∑
n=0

µn(s) t−n . (4–3)
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µn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, n < 0,

1, n = 0,

1
n

d∑
p=1

(
νp+1(n) − S1+d(s−1)−2(n−p)−1

2d νp(n)
)
µn−p, n ≥ 1.

(4–4)

Here, κ = (1 − d + S1)/2 as in (4–1), and µn(s) =
µn(λ1, ..., λd; s) satisfy a recursion (4–4).

By induction one shows that µn is a polynomial in
s with the leading term 2−nsn. So if we differentiate
(4–3) k times to s, exactly k terms vanish and we get the
following formula for the derivatives ∂k

∂sk Gs(t):

∂k

∂sk
Gs(td/2) ∼

(2π)(d−1)/2
√

d
e−d t tκ−1−k

∞∑
n=0

∂k µn+k(s)
∂sk t−n . (4–5)

Equations (4–2), (4–3), and (4–5) provide asymptotic
series for the functions φ(t), Gs(t), and ∂k

∂sk Gs(t) at in-
finity. For computational purposes, though, it is better
to work with continued fraction expansions associated to
these series. Consider, for instance, the case of φ(t), the
case of ∂k

∂sk Gs(t) being analogous.
Fix d and λ1, ..., λd. Letting x = 1/t in (4–2), we get

ψ(x) :=
√

d
2(2π)(d−1)/2 e−d x xκ φ(x−d/2) ∼

∞∑
n=0

Mn xn (4–6)

with Mn constants. As any formal series, the right-hand
side can be formally written either as a unique infinite
continued fraction
∞∑

n=0

Mnxn = α0+
xk0

α1 + xk1

α2+
xk2

α3+...

,with αn �= 0 for n > 0,

or as a unique terminating fraction of the same form.
To see this start with p0(x) =

∑
Mnxn and define re-

cursively formal power series pn+1(x) in terms of pn(x)
by

pn(x) = αn +
xkn

pn+1(x)
, for n ≥ 0 .

Here, kn is the degree of the first nonzero term in
pn(x) − pn(0); if pn(x) ≡ 0 for some n, then terminate.
This shows the existence of the continued fraction expan-
sion; its uniqueness is not difficult to verify as well. The
construction shows how to calculate the αn for given Mn

with n ≤ N . There are of course better (computation-
ally more stable) methods to find the αn, see for instance
[Henrici 77, Lorentzen and Waadeland 92].

If the fraction does not terminate, define the partial
convergents Cn(x) for all n by

Cn(x) = α0 +
xk0

α1 + xk1

...+ x
kn−1
αn

.

If the fraction does terminate at CN , let Cn = CN for
n > N .

We can think of Cn(x) as approximants to the origi-
nal function ψ(x) of (4–6). Indeed, Cn(x) is a rational
function whose Taylor expansion at x = 0 starts with
M0 + ... + Mnxn. Hence, ψ(x) and Cn(x) have the same
asymptotic expansion at least up to xn. Therefore, there
is a constant Kn > 0 such that

|ψ(x) − Cn(x)| ≤ Knxn+1 .

Unfortunately, it seems very difficult to provide explicit
bounds for Kn. It appears that Cn(x) converge rapidly to
ψ(x), but to prove either “converge” or “rapidly” or “to
ψ(x)” in any generality is hard. So, the last step of the
algorithm is based on purely empirical observations con-
cerning the convergence of the continued fractions. The
reader uncomfortable with it is referred to Section 5 on
how to avoid this. In the implementation [Dokchitser 02]
we do use asymptotic expansions with a simple numeri-
cal check (Step 7 in Algorithm 4.2 below) to justify the
values.

Algorithm 4.2. (Computing φ(t) for t arbitrary.) The
computation of φ(t) for arbitrary t can be performed as
follows.

1. Let ε > 0 be the necessary upper bound for the
required precision in the computation of φ(t).

2. Let φn(t) be the nth approximant to φ(t) defined by
(see (4–2))

φn(t) = 2(2π)(d−1)/2
√

d
e−d t2/d

t2κ/d Cn(1/t2/d),

for n ≥ 0 .
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As we have already mentioned, φ(t) − φn(t) =
O(t−n) as t → ∞. Denote by φtaylor(t) the func-
tion φ(t) computed using the power series expansion
at the origin as in Section 3.

3. Determine t0 such that |φ0(t)| < ε/2 for t > t0.

4. Choose a subdivision of the interval [0, t0],

0 < tk < tk−1 < . . . < t1 < t0 < ∞ .

For every ti let ni be an integer for which |φn(t) −
φn+1(t)| < ε/2 and |φn(t) − φn+2(t)| < ε/2.

5. Determine Mn for 0 ≤ n ≤ nk using the recursion
that they satisfy.

6. The function φ(t) is then computed as follows:

φgeneral(t) =

⎧⎨
⎩

φtaylor(t), 0 < t ≤ tk ,
φni

(t), ti ≤ t < ti−1 ,
0, t > t0 .

7. As a numerical check, verify that φtaylor(tk) agrees
with φnk

(tk).

Example 4.3. Let d = 2 and λ1 = λ2 = 0 as in Example
3.2. Recall that in this case φ(t) is a Bessel function
4K0(2t). Asymptotic expansion (4–2) then reads

φ(t) ∼ 2
√

π e−2 t t−1/2
∞∑

n=0

Mn t−n ,

and the coefficients Mn satisfy a recursion

16nMn = −(2n − 1)2Mn−1 .

It follows that

M0 = 1,

M1 = − 1
16 ,

M2 = 9
512 ,

...

Mn = (−1)n (2n−1)!!(2n−1)!!
16nn! , . . . .

Choose ε = 1
2 · 10−10 and t0 = 12, t1 = 6, and t2 = 2.

Take n1 = 6 and n2 = 20, and compute φ(t) by

φgeneral(t) =

⎧⎪⎪⎨
⎪⎪⎩

φtaylor(t), 0 < t ≤ 2 ,
φ20(t), 2 ≤ t < 7 ,
φ6(t), 7 ≤ t < 12 ,
0, t > 12 .

Numerical check produces |φtaylor(2) − φ20(2)| ≤ 4 ·
10−14 ≤ ε, as required.

5. IMPLEMENTATION NOTES

Let us begin with a summary of steps of the algorithm
presented in the previous sections. We start with an L-
function satisfying Assumptions 2.1–2.3 (see also Remark
2.7).

• The formula used for the numerical verification of
the functional equation is (2–5) and that for com-
puting L(s) and its derivatives is (2–9) together with
L∗(s) = L(s)/γ(s). The functions used in these for-
mulae are φ(t) defined by (2–2) and Gs(t) defined
by (2–7).

• To compute φ(t) numerically we employ Algorithm
4.2. It is based on power series expansions at the
origin (Algorithm 3.3), asymptotic formula (4–2),
recursion (Algorithm 4.1) and the associated con-
tinued fractions.

• The functions ∂k

∂sk Gs(t) are computed in the same
manner. The corresponding expansions at the origin
are given by Algorithm 3.5, asymptotics by (4–3),
and recursions for the coefficients by (4–4).

Now, in order to make a practical algorithm out of
these results, we still need to explain how to truncate
various infinite sums and to discuss related precision is-
sues.

If one desires to supply our method with rigorous
proofs that all of the computations are correct, the fol-
lowing issues have to be addressed. First, one has to
keep track of the number of operations used and possible
round-off errors, perhaps even using interval arithmetic
to justify the results. Second, one needs to have analytic
bounds on the size of the functions φ(t) and Gs(t) for
large t rather than just their asymptotic behaviour.

In the PARI implementation [Dokchitser 02] we have
chosen to be content with intuitively natural bounds and
a few numerical checks to justify the results. A reader
wishing to develop a more rigorous approach might con-
sider the following.

Remark 5.1. Let us start with the computations of φ(t)
and ∂k

∂sk Gs(t) by means of series expansions at the origin.
Both the defining exressions (3–4) and (3–6) are infinite
sums, but it is not difficult to see how to terminate them.
The point is that it suffices to give an explicit bound
on the coefficients c

(n)
i,j which goes to zero exponentially

with n. Everything else in (3–4) and (3–6) grows at most
polynomially in n so that any rough estimate will do. As
for an explicit exponential bound on c

(n)
i,j , it can be found
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from (3–3) and, say, from the obvious lower bound 1
2nd

for n � 1 on the coefficients in nd
∏d

k=1(1 − s+λk+mj

2n )
treated as a polynomial in s.

Remark 5.2. The next question is that of working preci-
sion. This has already been mentioned in Remarks 3.4
and 3.6. When φ(t) and Gs(t) are computed from the
expansions at the origin, the terms in the defining se-
ries can be very large. Then, one needs to work with
larger working precision than the desired precision of the
answer.

A similar thing occurs when one computes L(s) for
large Im s. This is a well-known problem that one has to
face when verifying the Riemann hypothesis. The point is
that L(s) = L∗(s)/γ(s) and both L∗(s) and γ(s) decrease
exponentially fast on vertical strips. Hence, one needs
to compute L∗(s) to more significant digits (log10 |γ(s)|
more to be precise) to evaluate L(s) to the desired pre-
cision.

A solution to this problem has been suggested in
Lagarias-Odlyzko [Lagarias and Odlyzko 79] and worked
out by Rubinstein [Rubinstein 98]. By modifying Gs(t)
with a suitably chosen exponential factor, one obtains a
formula for L(s) that does not have the loss-of-precision
behaviour. It may be possible to work out the behaviour
of the special functions in Rubinstein’s formulae as we
did for φ(t) and Gs(t).

Remark 5.3. The next issue is how to truncate the main
formulae used is this paper. Recall that to verify the
functional equation numerically we used (2–3),

Θ(t) =
∞∑

n=1

an φ(nt
A ) .

Then to actually compute the L-values, we wrote

∂k

∂sk
L∗(s) =

∞∑
n=1

an
∂k

∂sk
Gs(

n

A
)

+ ε
∞∑

n=1

an
∂k

∂sk
Gw−s(

n

A
) +

∑
j

k! rj

(pj − s)k+1
.

(See also Remark 2.7 for the necessary modifications
when there are two different L-functions involved in the
functional equation.) In any case, one needs analytic
estimates on φ(t) and ∂k

∂sk Gs(t) for large t to carefully
estimate the error in truncating these infinite sums.

One possible way to obtain such estimates is to use
a method of Tollis [Tollis 97] based on Braaksma’s
work [Braaksma 64] on asymptotic behaviour of Meijer

G-functions. By applying the Euler-Maclaurin summa-
tion formula to the Mellin-Barnes integral defining Gs(t),
Tollis determines an explicit exponential bound for Gs(t)
in the case λ = (0, ..., 0, 1, ..., 1) with ρ + σ zeroes and σ

ones (ρ, σ ≥ 0). It is likely that his method is general
enough to obtain similar estimates for an arbitrary Γ-
factor as well.

Remark 5.4. Finally, let us turn to the methods of Sec-
tion 4, asymptotic expansions, and associated continued
fractions.

Unfortunately, there seem to be few cases where one
can actually provide explicit estimates for the conver-
gence of the continued fractions of, say, φ(t). The most
general result known to the author in this respect is that
of Gargantini and Henrici [Gargantini and Henrici 67].
They study the functions that can be written as a Stielt-
jes transform of a positive measure,

f(x) =
∫ ∞

0

dµ(t)
x + t

,

and show that such functions admit convergent contin-
ued fraction expansions at infinity, with explicit error
bounds. This, however, does not seem to apply to our
functions in general. See Henrici [Henrici 77, Chapter 12]
and Lorentzen-Waadeland [Lorentzen and Waadeland 92]
for more information.

The full analysis is available, though, in low-
dimensional cases. For instance, for d = 1 the function
Gs(x) is the incomplete Gamma function for which there
are known convergent continued fractions expansions at
infinity; see Henrici [Henrici 77, Section 12.13.I]. Also,
for d = 2 the function φ(x) reduces to the Whittaker
function, which is a Stieltjes transform (basically, of it-
self). So, in this case, the continued fraction expansion
converges; see Henrici [Henrici 77, Section 12.13.II].

Returning to the general case, there always remains a
possible way out, which is to compute φ(t) and ∂k

∂sk Gs(t)
only using Taylor expansions at the origin, even for
large t. In this case one can give precise estimates for
the convergence (see e.g., [Cohen 00, Section 10.3]) that
lead to a rigorous algorithm. Then, however, one pays
the price of substantial loss of efficiency.

Alternatively, one might try a completely different ap-
proach to compute the functions in question at infin-
ity. For instance, one can consider functions related to
∂k

∂sk Gs(t) and their derivatives as Bessel functions Kn(t)
are related to K0(t). They satisfy various relations, and
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one may be able to construct an algorithm to compute
them using backward recursions, possibly vector-valued,
analogous to what one does for Bessel functions. (This
idea is due to D. Zagier.)

6. L-FUNCTIONS WITH UNKNOWN INVARIANTS

In a perfect world, one knows all of the invariants asso-
ciated to one’s L-function. In a less perfect world, one
may not know the sign ε and, perhaps, the residues ri at
the poles of L∗(s). In reality, however, there are plenty
of examples where it is even difficult to determine the ex-
ponential factor A and some of the coefficients an. For-
tunately, in some of these cases it is still possible to make
computations with L-functions.

To illustrate this hierarchy of missing data, start with
an L-function L(s) that is expected to satisfy Assump-
tions 2.1–2.3, and only the sign ε in the functional equa-
tion is difficult to determine. As we have already men-
tioned, the functional equation is equivalent to the state-
ment that, for all t > 1,

Θ(1/t) = ε twΘ(t) −
∑

j

rjt
pj . (6–1)

Choose 1 < t < ∞ and evaluate the left-hand and
the right-hand side. This gives an equation which can
be solved for ε. Afterwards it is of course sensible to
check that (6–1) holds with the obtained ε by verifying
it numerically for some other values of t.

The same applies to the case when neither the sign
ε nor the residues ri are known. The above equation
is linear in them all, so choosing enough t’s produces a
linear system of equations from which ε and the ri can be
obtained. There might be, of course, precision problems
if there are many residues to be determined.

In most cases, actually, ε = ±1 and L∗(s) has no poles,
so simply trying ε = −1 and ε = 1 for some t > 1 imme-
diately yields the right sign.

Next come the dimension d, the Hodge numbers
λ1, ..., λd, and the poles pj of L∗(s). Fortunately, these
can always be determined in practice, at least in all of
the cases that the author is aware of.

The next issue is that of the exponential factor A.
Consider for instance L(C,H1, s), the L-function associ-
ated to H1 of a genus g curve C/Q. Then, A =

√
N/πg

where N is the conductor of C. In practice, to determine
N one at least has to be able to find a model of C over Z

that is regular at a given prime of bad reduction. This, in
turn, means performing successive blowing-ups over the

unramified closure of Qp, an operation which is not with-
out computational difficulties. For curves of genus 1 and
2, there are effective algorithms for doing this, but not
for higher genera. So finding N for a given curve might
be hard. Also note that (6–1) is absolutely not linear in
A, so one cannot solve for it directly.

Fortunately, one can usually determine the full set
Σ = {p1, ..., pk} of primes where C has bad reduction.
Then, one knows that N = pb1

1 · · · pbk

k is composed of
those primes and has (hopefully) an upper bound for the
bi, say in terms of the discriminant of C or some similar
quantity. This leaves only finitely many choices for N

and, as in the case of the sign ε = ±1, a simple trial-
and-error can establish the proper functional equation.
It should be noted here that this applies, of course, only
to L-functions that have a unique A (and ε, etc.) for
which the functional equation holds.

Finally we turn to the coefficients ai. Again, take the
case of a genus g curve C/Q with the set Σ = {p1, ..., pk}
of bad primes as above. Then the problem is to determine
the local factors at bad primes, that is the coefficients apj

i

for 1 ≤ i ≤ k and j ≥ 1. The local factors at good primes
can be determined by counting points over finite fields,
and the coefficients an for composite n can be obtained
by the product formula.

Fortunately, again, there are only finitely many choices
of possible local factors for a given bad prime pi. For
instance, |ap| < 2g

√
p and |apj | satisfy similar estimates.

Moreover, apj with 1 ≤ j < 2g determine apj for all j,
as the degree of the local factor is bounded by 2g. This,
however, is not a very practical approach, especially for
large primes pi when there are numerous possibilities for
the local factors.

Another approach is to note that the functional equa-
tion (6–1) is in fact linear in the ai, since Θ(t) is linear.
If there were only finitely many unknown coefficients ai,
they could have been obtained in the same manner as ε

and the ri were.
To illustrate what can be done when infinitely many

coefficients are unknown, consider the following typical
case.

1. Say, there is just one prime p for which ap is difficult
to determine theoretically;

2. assume that all an are integers;

3. assume that there is a product formula for L(s) in
question, in particular amn = aman for m,n co-
prime.
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Using multiplicativity, write (2–3) as

Θ(t) =
∞∑

k=1

apkθk(t) ,

where θk(t) are computable functions. Moreover, since
we only take finitely many terms when actually comput-
ing Θ(t), we have

Θ(t) ≈
K∑

k=1

apkθk(t) ,

where “≈” stands for “equal to required precision.”
Hence, the functional equation (6–1) for a fixed t becomes
simply a linear equation in ap, ..., apK . After plugging in
enough ts, we get a linear system that can be solved for
the api . However, the coefficient functions θk(t) decay
rapidly with k, so api obtained by solving this system
are certainly unreliable for large i. If the first coefficient
ap resembles an integer, we can simply round it off and
repeat the same process with ap2 , ..., apK as variables un-
til all the api are determined.

In practice, this works well for a large prime p and even
when there are several (large) primes p for which the api

are unknown. This does not work for small primes, for
instance virtually never for p = 2. But then, for small
primes one may try all possible local factors by trial-
and-error and for large primes solve for the coefficients
as described above.

At this stage the reader is likely to be long horrified by
the methods suggested here and might wonder whether
the reliability of such an approach is not extremely du-
bious. In our defence we may say that since there is an
effective way to verify the functional equation numeri-
cally, any method to make an intelligent guess will do,
however dubious it might be. When A, ε, and the bad
local factors are determined (or simply guessed in what-
ever way), one can make numerous checks that they are
of correct shape and that (2–5) holds for various t. Thus,
it is hoped that someone who has actually tried to per-
form blowing-ups on a genus 6 arithmetic surface with
220 in the discriminant will forgive the author for offer-
ing desperate tricks to avoid the hard work. After all,
the methods of this section do allow us to produce ev-
idence for various conjectures even in the difficult cases
where it is hard to determine all of the invariants of the
L-function in question-using theoretical arguments.

In conclusion, let us mention that, fortunately, there
are better ways to determine the local factors for bad
primes, at least for arithmetic surfaces. These were used
to make computations with curves of genus g ≤ 8 and
are to appear in [Dokchitser, to appear].
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[Braaksma 64] B. L. J. Braaksma. “Asymptotic Expansions
and Analytic Continuations for a Class of Barnes-
Integrals.” Compositio Math. 15 (1964), 239–241.

[Buhler et al. 85] J. P. Buhler, B. H. Gross, and D. B. Zagier.
“On the Conjecture of Birch and Swinnerton-Dyer for an
Elliptic Curve of Rank 3.” Math. Comp. 44 (1985), 473–
481.

[Cohen 00] H. Cohen. Advanced Topics in Computational
Number Theory. New York: Springer-Verlag, 2000.

[Davies and Haselgrove 61] D. Davies and C. B. Haselgrove.
“The Evaluation of Dirichlet L-Functions.” Proc. Royal
Soc. Ser. A 264 (1961), 122–132.

[Dokchitser 02] T. Dokchitser. “ComputeL: Pari Pack-
age to Compute Motivic L-Functions.” Avail-
able from World Wide Web (http://maths.dur.ac
.uk/∼dma0td/computel/), 2002.

[Dokchitser, to appear] T. Dokchitser. “Computations with
L-functions of Higher Genus Curves.” In preparation.
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