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We classify the orientable finite-volume hyperbolic 3-manifolds
having nonempty compact totally geodesic boundary and ad-
mitting an ideal triangulation with at most four tetrahedra. We
also compute the volume of all such manifolds, describe their
canonical Kojima decomposition, and discuss manifolds having
cusps.

The eight manifolds built from one or two tetrahedra were
previously known. There are 151 different manifolds built from
three tetrahedra, realizing 18 different volumes. Their Kojima
decomposition always consists of tetrahedra (but occasionally
requires four of them). There is a single cusped manifold, which
we can show to be a knot complement in a genus-2 handlebody.
Concerning manifolds built from four tetrahedra, we show that
there are 5,033 different ones, with 262 different volumes. The
Kojima decomposition consists either of tetrahedra (as many as
eight of them in some cases), of two pyramids, or of a single oc-
tahedron. There are 30 manifolds having a single cusp and one
having two cusps.

Our results were obtained with the aid of a computer. The
complete list of manifolds (in SnapPea format) and full details on
their invariants are available on the world wide web.

1. INTRODUCTION

This paper is devoted to the class of all orientable finite-
volume hyperbolic 3-manifolds having nonempty com-
pact totally geodesic boundary and admitting a minimal
ideal triangulation with either three or four but no fewer
tetrahedra. We describe the theoretical background and
experimental results of a computer program that has en-
abled us to classify all such manifolds. (The case of man-
ifolds obtained from two tetrahedra was previously dealt
with in [Fujii 90]). We also provide an overall discussion
of the most important features of all these manifolds,
namely of:
• their volumes;
• the shape of their canonical Kojima decomposition;

• the presence of cusps.
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These geometric invariants have all been determined by
our computer program. The complete list of manifolds
in SnapPea format and detailed information on the in-
variants is available from [Petronio 04].

2. PRELIMINARIES AND STATEMENTS

We consider in this paper the class H of orientable 3-
manifolds M having compact nonempty boundary ∂M

and admitting a complete finite-volume hyperbolic met-
ric with respect to which ∂M is totally geodesic. It is
a well-known fact (see [Kojima 90]) that such an M is
the union of a compact portion and some cusps based
on tori, so it has a natural compactification obtained by
adding some tori. The elements of H are regarded up to
homeomorphism, or equivalently isometry (by Mostow’s
rigidity).

2.1 Candidate Hyperbolic Manifolds

Let us now introduce the class H̃ of 3-manifolds M such
that:

• M is orientable, compact, boundary-irreducible, and
acylindrical (see [Fomenko and Matveev 97] for the
terminology we use about 3-manifolds);

• ∂M consists of some tori (possibly none of them) and
at least one surface of negative Euler characteristic.

The basic theory of hyperbolic manifolds [Thurston 78]
implies that, up to identifying a manifold with its nat-
ural compactification, the inclusion H ⊂ H̃ holds. We
note that, by Thurston’s hyperbolization, an element of
H̃ actually lies in H if and only if it is atoroidal. However
we do not require atoroidality in the definition of H̃, for
a reason that will be mentioned later in this section and
explained in detail in Section 3.

Let ∆ denote the standard tetrahedron, and let ∆∗ be
∆ minus open stars of its vertices. Let M be a compact
3-manifold with ∂M �= ∅. An ideal triangulation of M

is a realization of M as a gluing of a finite number of
copies of ∆∗, induced by a simplicial face-pairing of the
corresponding ∆’s. We denote by Cn the class of all ori-
entable manifolds admitting an ideal triangulation with
n, but no fewer, tetrahedra, and we set

Hn = H ∩ Cn and H̃n = H̃ ∩ Cn.

We can now quickly explain why we did not include
atoroidality in the definition of H̃. The point is that there
is a general notion [Matveev 90] of complexity c(M) for
a compact 3-manifold M , and c(M) coincides with the

minimal number of tetrahedra in an ideal triangulation
precisely when M is boundary-irreducible and acylindri-
cal. This property makes it feasible to enumerate the
elements of H̃n.

To summarize our definitions, we can interpret Hn as
the set of 3-manifolds that have complexity n and are hy-
perbolic with nonempty compact geodesic boundary, while
H̃n is the set of complexity-n manifolds which are only
“candidate hyperbolic.”

2.2 Enumeration Strategy

The general strategy of our classification result is then as
follows:

• we employ the technology of standard spines
[Matveev 90] (and more particularly o-graphs
[Benedetti and Petronio 95]), together with certain
minimality tests (see Section 3 below), to produce
for n = 3, 4 a list of triangulations with n tetrahe-
dra, such that every element of H̃n is represented
by some triangulation in the list. Note that the
same element of H̃n is represented by several dis-
tinct triangulations. Moreover, there could a priori
be in the list triangulations representing manifolds
of complexity lower than n, but the result of the
classification itself actually shows that our minimal-
ity tests are sophisticated enough to ensure this does
not happen;

• we write down and numerically solve the hyperbol-
icity equations (see [Frigerio and Petronio 04] and
Section 4 below) for all the triangulations, finding
solutions in the vast majority of cases (all of them
for n = 3);

• we numerically compute the tilts (see [Frigerio and
Petronio 04, Ushijima 02a] and Section 4) of each
of the geometric triangulations thus found, whence
determining whether the triangulation (or maybe a
partial assembling of the tetrahedra of the trian-
gulation) gives Kojima’s canonical decomposition.
When it does not, we modify the triangulation ac-
cording to the strategy described in [Frigerio and
Petronio 04], eventually finding the canonical de-
composition in all cases;

• we compare the canonical decompositions to each
other, thus finding precisely which pairs of triangu-
lations in the list represent identical manifolds; we
then build a list of distinct hyperbolic manifolds,
which coincides with Hn because of the next point;
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• we prove that, when the hyperbolicity equations
have no solution, then indeed the manifold is not
a member of Hn, because it contains an incompress-
ible torus (this is shown in Section 3).

Even if the next point is not really part of the classifica-
tion strategy, we single it out as an important one:

• we compute the volume of all the elements of Hn

using the geometric triangulations already found and
the formulae from [Ushijima 02b].

2.3 One-Edged Triangulations

Before turning to the description of our discoveries, we
must mention another point. Let us denote by Σg the
orientable surface of genus g and by K(M) the set of
blocks of the canonical Kojima decomposition of M ∈ H.
We have introduced in [Frigerio et al. 03a] the class Mn

of orientable manifolds having an ideal triangulation with
n tetrahedra and a single edge, and we have shown that
for n � 2 and M ∈ Mn:

• M is hyperbolic with geodesic boundary Σn;

• M has a unique ideal triangulation with n tetrahe-
dra, which coincides with the canonical decomposi-
tion; moreover, c(M) = n and Mn = {M ∈ H̃n :
∂M = Σn};

• the volume of M depends only on n and can be com-
puted explicitly.

These facts imply in particular that Mn is contained in
Hn.

2.4 Nature of the Results

Since we have employed computers, it seems appropri-
ate to underline the experimental nature of our results,
to indicate the possible sources of errors, and to explain
how we have dealt with them. The enumeration of the
potential hyperbolic manifolds H̃n relies on purely combi-
natorial methods, so there is no numerical approximation
at this stage. The computer program implementing the
enumeration is a variation on one that proved to be effi-
cient in the closed case, where our results [Martelli and
Petronio 01] were independently checked by Matveev and
his collaborators.

Assume now that our enumeration of H̃n is correct,
and note that we discard from H̃n only manifolds that
we can prove theoretically to be nonhyperbolic. In addi-
tion, the techniques of Lackenby [Lackenby 00] imply, as
described in [Costantino et al. 04], that already an ap-
proximate solution of the angle equations only [Frigerio

and Petronio 04] is sufficient to guarantee hyperbolicity.
Therefore, our list for Hn is sure to contain hyperbolic
manifolds, even if their hyperbolic structures are com-
puted only approximately. So the list could differ from
the right one only for containing duplicates.

Duplicates were removed by computing Kojima’s
canonical decomposition via tilts [Frigerio and Petronio
04], which in turn requires the knowledge of the exact
hyperbolic structure, so indeed numerical issues could
arise here. Hyperbolic structures were computed solving
the equations of [Frigerio and Petronio 04] by Newton’s
method with partial pivoting. This method of course
requires rounding of real numbers, but in all cases con-
vergence to the solution was extremely fast and stable;
moreover, a number of cases were checked by hand, so we
are very confident that our approximations of the solu-
tions are accurate. The computation of tilts also involves
rounding, but the Kojima decomposition was formally
verified to be exact in all cases involving polyhedra dif-
ferent from the tetrahedron, and in many other cases.
Moreover all the tilts found were many orders of magni-
tudes away from 0 than the precision we were using. For
these reasons we think that our list for Hn actually does
not contain any duplicates.

2.5 Results

We can now state our main results, recalling first [Fujii
90] that H1 = ∅ and H2 = M2 has eight elements, and
pointing out that all the values of volumes in our state-
ments are approximate, not exact ones. More accurate
approximations are available on the web [Petronio 04].

2.5.1 Results in complexity 3. We have discovered
that:

• H3 coincides with H̃3 and has 151 elements;

• M3 consists of 74 elements of volume 10.428602;

• all the 77 elements of H3 \ M3 have boundary Σ2,
and one of them also has one cusp.

Moreover, the elements M of H3 \M3 split as follows:

• 73 compact M with K(M) consisting of three tetra-
hedra; vol(M) attains 15 different values, ranges
from 7.107592 to 8.513926, and has maximal multi-
plicity nine, with distribution according to number
of manifolds as shown in Table 3 (see the Appendix);

• three compact M with K(M) consisting of four
tetrahedra; they all have the same volume of
7.758268;
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FIGURE 1. The cusped manifold having complexity three
and nonempty boundary is the complement of a knot in
the genus-2 handlebody.

• one noncompact M ; it has a single toric cusp, K(M)
consists of three tetrahedra, and vol(M) = 7.797637.

The cusped element of H3 turns out to be a very inter-
esting manifold. In [Frigerio et al. 03b] we analyzed all
the Dehn fillings of its toric cusp, showing that precisely
six of them are nonhyperbolic and improving previously
known bounds on the distance between nonhyperbolic
fillings. In particular, we have shown that there are fill-
ings giving the genus-2 handlebody, so the manifold in
question is a knot complement, as shown in Figure 1.

2.5.2 Results in complexity 4. We have discovered
that:

• H4 has 5,033 elements, and H̃4 has six more;

• 5,002 elements of H4 are compact; more precisely:

– 2,340 have boundary Σ4 (i.e., they belong to
M4);

– 2,034 have boundary Σ3;

– 628 have boundary Σ2;

• 31 elements of H4 have cusps; more precisely:

– 12 have one cusp and boundary Σ3;

– 18 have one cusp and boundary Σ2;

– one has two cusps and boundary Σ2.

More detailed information about the volume and the
shape of the canonical Kojima decomposition of these
manifolds is described in Tables 1 and 2. In these ta-
bles each box corresponds to the manifolds M having a
prescribed boundary and type of K(M). The first infor-
mation we provide (in boldface) within the box is the
number of distinct such M . When all the M in the box
have the same volume, we indicate its value. Otherwise,
we indicate the minimum, the maximum, the number of
different values, and the maximal multiplicity of the val-
ues of the volume function, and we refer to one of the

tables in the Appendix where more accurate information
can be found. We emphasize here that, just as above,
K(M) only describes the blocks of the Kojima decompo-
sition, not the combinatorics of the gluing.

In addition to what is described in the tables, we have
the following extra information on the geometric shape
of K(M) when it is given by an octahedron:

• the group of 56 manifolds in Table 1 is built from an
octahedron with all dihedral angles equal to π/6;

• the group of 14 manifolds in Table 1 is built from an
octahedron with all dihedral angles equal to π/3;

• the group of 8 manifolds in Table 1 is built from an
octahedron with three dihedral angles 2π/3 along a
triple of pairwise disjoint edges and two more com-
plicated angles (one repeated three times, one six
times).

A careful analysis of the values of volumes found leads
to the following consequences:

Remark 2.1. For n = 3, 4, the maximum of the volume
on Hn is attained at the elements of Mn.

Remark 2.2. With the only exceptions discussed below in
Remarks 2.4 and 2.5, if two manifolds in H3∪H4 have the
same volume, then they also have the same complexity,
boundary, and number of cusps. Moreover, they typi-
cally also have the same geometric shape of the blocks of
the Kojima decomposition (but of course not the same
combinatorics of gluings).

Remark 2.3. There are 280 distinct values of volume we
have found in our census, and the vast majority of them
correspond to more than one manifold. As a matter of
fact, only 25 values are attained just once: 22 are in
Tables 6 and 7, two in Table 9, and one is the volume of
the cusped element of H3.

Remark 2.4. As stated above, there are three elements of
H3 with canonical decomposition made of four tetrahe-
dra. The set of geometric shapes of these four tetrahedra
is actually the same in all three cases, and it turns out
that the same tetrahedra can also be glued to give five
different elements of H4. This gives the only example we
have of elements H3 having the same volume as elements
of H4. The volume in question is 7.758268.

Remark 2.5. The double-cusped manifold in H4 has the
same volume 9.134475 as two of the single-cusped ones
(see Table 9), and it is probably worth mentioning a
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Σ4 Σ3 Σ2

4 tetra 2,340 1,936 555
vol = 14.238170 min(vol) = 11.113262 min(vol) = 7.378628

max(vol) = 12.903981 max(vol) = 10.292422
values = 59 values = 169

max mult = 138 max mult = 27
(Tables 4 and 5) (Tables 6 and 7)

5 tetra 42 41
vol = 11.796442 min(vol) = 8.511458

max(vol) = 9.719900
values = 16

max mult = 6
(Table 8)

6 tetra 3
vol = 8.297977

8 tetra 3
vol = 8.572927

1 octa 56 14
(regular) vol = 11.448776 vol = 9.415842
1 octa 8
(non-reg) vol = 8.739252
2 square 4
pyramids vol = 9.044841

TABLE 1. Number of compact elements of H4, subdivided according to the boundary (columns) and shape of the canonical
Kojima decomposition (rows); “tetra” and “octa” mean tetrahedron and octahedron, respectively, and “square pyramid”
means pyramid with square basis.

1 cusp, Σ3 1 cusp, Σ2 2 cusps, Σ2

4 tetra 12 16 1
vol = 11.812681 min(vol) = 8.446655 vol = 9.134475

max(vol) = 9.774939
values = 8

max mult = 3
(Table 9)

2 square 2
pyramids vol = 8.681738

TABLE 2. Number of cusped elements of H4, subdivided according to cusps and boundary (columns), and the shape of
the canonical Kojima decomposition (rows).

heuristic explanation for this fact. Recall first that an
ideal triangulation of a manifold induces a triangulation
of the basis of the cusps. For 28 of the single-cusped
manifolds in H4, this triangulation involves two trian-
gles, but for two of them it involves four, just as it does
with the double-cusped manifold (both tori contain two
triangles). In addition, the geometric shapes of the four
triangles are the same in all three cases. In other words,
one sees here that four Euclidean triangles can be used
to build either two “small” Euclidean tori or a single
“big” Euclidean torus (in two different ways). So, in

some sense, the three manifolds in question have the same
“total cuspidal geometry” (even if two manifolds have one
cusp and one has two). This phenomenon already occurs
in the case of manifolds without boundary [Weeks], and
also in this case leads to equality of volumes. In the
present case equality is also explained by the fact that
the three manifolds in question have Kojima decompo-
sition with the same geometric shape of the blocks. In
fact, each of them is the gluing of four isometric partially
truncated tetrahedra with three dihedral angles π/3 and
three π/6.
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The next information may also be of some interest:

Remark 2.6. We will show further on that the six mani-
folds in H̃4 \ H4 split along an incompressible torus into
two blocks, one homeomorphic to the twisted interval
bundle over the Klein bottle and the other one to the
cusped manifold that belongs to H3. These blocks give
the JSJ decomposition of the manifolds involved. We
will also show that the manifolds are indeed distinct by
analyzing the gluing matrix of the JSJ decomposition.

Remark 2.7. As an ingredient of our arguments, we
have completely classified the combinatorially inequiv-
alent ways of building an orientable manifold by gluing
together in pairs the faces of an octahedron. This topic
was already mentioned in [Thurston 78] as an example of
how difficult classifying 3-manifolds could be (note that
there are as many as 8,505 gluings to be compared for
combinatorial equivalence). For instance, the group of
56 manifolds that appears in Table 1 arises from the glu-
ings of the octahedron such that all the edges get glued
together. The groups of 14 and 8 arise similarly, requiring
two edges and restrictions on their valence.

Remark 2.8. We have never included data about homol-
ogy, because this invariant typically gives much coarser
information than the geometric invariants that we have
computed (only 14 different homology groups arise for
our 5,184 manifolds). We note, however, that it occasion-
ally happens that two manifolds having the same com-
plexity, boundary, volume, and geometric blocks of the
canonical decomposition have different homology. The
homology groups we have found are Z2 ⊕ Z/n for n =
1, . . . , 8; Z3⊕Z/n for n = 1, 2, 3, 5; Z4; and Z2⊕Z/2⊕Z/2.

Remark 2.9. Even if we have not yet introduced the hy-
perbolicity equations that we use to find the geometric
structures, we point out a remarkable experimental dis-
covery. The equations to be used in the cusped case are
qualitatively different (and a lot more complicated) than
those to be used in the compact case. However, for all the
32 cusped manifolds of the census, the hyperbolic struc-
ture was first found as a limit of approximate solutions
of the compact equations.

Remark 2.10. For each M in H3 ∪H4, each of the (often
multiple) minimal triangulations of M has been found to
be geometric, i.e., the corresponding set of hyperbolicity
equations has been proved to have a genuine solution.
This strongly supports the conjecture that “minimal im-

plies geometric,” which one could already guess from the
cusped case [Weeks].

Remark 2.11. For each M in H3∪H4, the Kojima decom-
position has been obtained by merging some tetrahedra
of a geometric triangulation of M . It follows that the Ko-
jima decomposition of every manifold in H3 ∪H4 admits
a subdivision into tetrahedra.

3. SPINES AND THE ENUMERATION METHOD

If M is a compact orientable 3-manifold, let t(M) be the
minimal number of tetrahedra in an ideal triangulation
of either M , when ∂M �= ∅, or M minus any number of
balls, when M is closed. The function t thus defined has
only one nice property: it is finite-to-one. In [Matveev
90] Matveev has introduced another function c, which
he called complexity, having many remarkable proper-
ties not satisfied by t. For instance, c is additive on
connected sums, and it does not increase when cutting
along an incompressible surface. Moreover, it was proved
in [Matveev 90, Matveev 98] that c equals t on the most
interesting 3-manifolds, namely c(M) = t(M) when M

is ∂-irreducible and acylindrical, and c(M) < t(M) oth-
erwise. Therefore, if χ(∂M) < 0, we have c(M) = t(M)
if and only if M ∈ H̃.

3.1 Definition of Complexity

We work in the piecewise linear category and use its cus-
tomary terminology [Rourke and Sanderson 82], which
includes the notions of link (of a point in a polyhedron)
and collapse (of a polyhedron onto a subpolyhedron). A
compact polyhedron P is called simple if the link of ev-
ery point in P is contained in the one-skeleton ∆(1) of
the tetrahedron. A point, a compact graph, and a com-
pact surface are thus simple. Three important possible
kinds of neighbourhoods of points are shown in Figure 2.
A point having the whole of ∆(1) as a link is called a
vertex, and its regular neighbourhood is as shown in Fig-
ure 2(c). The set V (P ) of the vertices of P consists of

ba c

FIGURE 2. Neighbourhoods of points in a standard
polyhedron.
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isolated points, so it is finite. Points, graphs and surfaces
of course do not contain vertices. A compact polyhedron
P contained in the interior of a compact manifold M

with ∂M �= ∅ is a spine of M if M collapses onto P ,
i.e., if M \ P ∼= ∂M × [0, 1). The complexity c(M) of a
3-manifold M is now defined as the minimal number of
vertices of a simple spine of either M , when ∂M �= ∅, or
M minus some balls, when M is closed.

Since a point is a spine of the ball, a graph is a spine
of a handlebody, and a surface is a spine of an interval
bundle, and these spines do not contain vertices, the cor-
responding manifolds have complexity zero. This shows
that c is not finite-to-one on manifolds containing essen-
tial discs or annuli.

In general, to compute the complexity of a mani-
fold one must look for its minimal spines, i.e., the sim-
ple spines with the lowest number of vertices. It turns
out [Matveev 90, Matveev 98] that M is ∂-irreducible
and acylindrical if and only if it has a minimal spine that
is standard. A polyhedron is standard when every point
has a neighbourhood of one of the types (a)–(c) shown
in Figure 2, and the sets of such points induce a cel-
lularization of P . That is, defining S(P ) as the set of
points of type (b) or (c), the components of P \ S(P )
should be open discs—the faces—and the components of
S(P ) \ V (P ) should be open segments—the edges.

The spines we are interested in are, therefore, stan-
dard and minimal. A standard spine is naturally dual
to an ideal triangulation of M , as suggested in Figure 3.
Moreover, by definition of H̃ and the results of Matveev
just cited, a manifold M with χ(∂M) < 0 belongs to H̃
if and only if it has a standard minimal spine. These two
facts imply the assertion already stated that c = t on
H̃ and c < t outside H̃ on manifolds with boundary of
negative χ.

3.2 Enumeration

A naive approach to the classification of all manifolds in
H̃n for a fixed n would be as follows:

FIGURE 3. Duality between ideal triangulations and
standard spines.

1. construct the finite list of all standard polyhedra
with n vertices that are spines of some orientable
manifold with boundary as prescribed (each such
polyhedron is the spine of a unique manifold [Casler
65], and computing the boundary is a routine mat-
ter [Benedetti and Petronio 95]);

2. check which of these spines are minimal, and discard
the nonminimal ones;

3. compare the corresponding manifolds for equality.

Step 1 is feasible (even if the resulting list is very long),
but Step 2 is not, because there is no general algorithm to
tell if a given spine is minimal or not. In our classification
of H̃3 and H̃4, we have only performed some minimality
tests. Our tests are based on the moves shown in Figure 4,
which are easily seen to transform a spine of a manifold
into another spine of the same manifold. Namely, we
have used the following fact:

• if a spine P of the list transforms into another one
with less than n vertices via a combination of the
moves of Figure 4, then P is not minimal, so it can
be discarded.

For our enumeration of H̃3 and H̃4, an important compu-
tational stratagem was to construct the candidate spines
portion after portion, following the branches of a tree,
and to “cut the dead branches” at their bases. This
means that the nonminimality test just described was
applied also to partially constructed spines, which makes
sense because the moves of Figure 4 have a local nature,
so a spine containing a nonminimal portion cannot be
minimal.

Remark 3.1. Starting from a standard spine, move (1) of
Figure 4 always leads to a simple but nonstandard spine,
and move (2) also does on some spines, whereas moves
(3) and (4) always give standard spines. In particular,
only moves (3) and (4) have counterparts at the level
of triangulations. This extra flexibility of simple spines
compared to triangulations is crucial for the enumeration.

Having obtained a list of candidate minimal spines
with n vertices, we conclude the classification of H̃n for
n = 3, 4 as follows:

• for each spine in the list, we write down and try to
solve numerically the hyperbolicity equations, and if
we find a solution, we compute the canonical Kojima
decomposition, as discussed in Section 4. Solutions
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(1) (2)

(3) (4)

FIGURE 4. Moves on simple spines.

∂M

P
F

F

FIGURE 5. Left: a regular neighbourhood of S(P ); the rest of P is obtained by attaching two discs. Right: a regular neighbourhood
in P of the torus T = F ; arrows indicate gluings.

are found in all cases for n = 3 and in all but six
cases for n = 4. All six nonhyperbolic spines contain
Klein bottles, so the corresponding manifolds cannot
be hyperbolic;

• comparing the canonical decompositions of the hy-
perbolic manifolds thus found and making sure they
do not belong to Hm for m < n, we classify Hn.
This gives H̃3 = H3 and H4;

• we show that the six nonhyperbolic spines give dis-
tinct manifolds, whose complexity cannot be less
than four, proving that H̃4 \ H4 contains six mani-
folds.

The rest of this section is devoted to proving the last step
and the assertions of Remark 2.6.

3.3 Classification of H̃4 \ H4

To analyze the six nonhyperbolic spines with four ver-
tices, we need more information on the cusped element
M of H3. Its unique minimal spine P (described in Fig-
ure 5 (left) has two faces, one of which, denoted by F and
marked in the picture, is an open hexagon whose closure
in P is a torus T . Since a neighbourhood of T in P is as
in Figure 5 (right), P \ F is incident to T on one side.

FIGURE 6. A simple polyhedron with θ-shaped boundary.

Moreover, the cusp of M lies on the other side of T , so T

can be viewed as the torus boundary component of the
compactification of M .

Let us now consider the polyhedron Q of Figure 6,
which one easily sees to be a spine of the twisted inter-
val bundle K ×∼ I over the Klein bottle. Note also that
Q has a natural θ-shaped boundary ∂Q (a graph with
two vertices and three edges) that we can assume lies

on ∂(K ×∼ I). Now, if P and F are those of Figure 5,
P \ F also has a θ-shaped boundary, and it turns out
that all the six nonhyperbolic candidate minimal spines
with four vertices have the form (P \ F ) ∪ψ Q, for some
homeomorphism ψ : ∂Q → ∂(P \ F ). It easily follows

that the associated manifold is M ∪Ψ (K ×∼ I), where

Ψ : ∂(K ×∼ I) → T is the only homeomorphism extend-
ing ψ.
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Let us now choose a homology basis on ∂(K ×∼ I) so
that the three slopes contained in ∂Q are 0, 1,∞ ∈ Q ∪
{∞}. Doing the same on T , we see that Ψ must map
{0, 1,∞} to itself, so its matrix in GL2(Z) must be one
of the following 12 ones:

±
(

1 0
0 1

)
, ±

(
−1 0
−1 1

)
, ±

(
1 −1
0 −1

)
,

±
(

0 1
1 0

)
, ±

(
−1 1
−1 0

)
, ±

(
0 −1
1 −1

)
.

Moreover, the six spines in question realize up to sign
all these matrices. Now the JSJ decomposition of M ∪Ψ

(K ×∼ I) consists of M and K ×∼ I, so M ∪Ψ (K ×∼ I) is
classified by the equivalence class of Ψ under the ac-
tion of the automorphisms of M and K ×∼ I [Fomenko
and Matveev 97]. But we can prove that M has no au-
tomorphisms (see below), and it is easily seen that the

only automorphism of K ×∼ I acts as minus the identity
on ∂(K ×∼ I) (or, to be precise, on its first homology).
Therefore, the six spines represent different manifolds.
Moreover they are ∂-irreducible, acylindrical, and nonhy-
perbolic, so they cannot belong to H̃m = Hm for m < 4,
and the classification is complete.

4. HYPERBOLICITY EQUATIONS AND THE
TILT FORMULA

In this section we recall how an ideal triangulation can
be used to construct a hyperbolic structure with geodesic
boundary on a manifold and how an ideal triangulation
can be promoted to become the canonical Kojima de-
composition of the manifold. We first treat the compact
case and then sketch the variations needed for the case
where also some cusps exist. For all details and proofs
(and for some very natural terminology that we use here
without giving actual definitions), we address the reader
to [Frigerio and Petronio 04].

4.1 Moduli and Equations

The basic idea for constructing a hyperbolic structure
via an ideal triangulation is to realize the tetrahedra as
special geometric blocks in H3 and then to require that
the structures match when the blocks are glued together.
To describe the blocks to be used, we first recall that we
denote by ∆∗ a truncated tetrahedron, that is a tetrahe-
dron minus open stars of its vertices. Then, we call the
hyperbolic truncated tetrahedron a realization of ∆∗ in H3

such that the truncation triangles and the lateral faces
of ∆∗ are geodesic triangles and hexagons, respectively,

and the dihedral angle between a triangle and a hexagon
is always π/2. Now one can show that:
• a hyperbolic structure on a combinatorial truncated

tetrahedron is determined by the 6-tuple of dihedral
angles along the internal edges;

• the only restriction on this 6-tuple of positive reals
comes from the fact that the angles of each of the
four truncation triangles sum up to less than π;

• the lengths of the internal edges can be computed as
explicit functions of the dihedral angles;

• a choice of hyperbolic structures on the tetrahedra
of an ideal triangulation of a manifold M gives rise
to a hyperbolic structure on M if and only if all
matching edges have the same length and the total
dihedral angle around each edge of M is 2π.

Given a triangulation of M consisting of n tetrahedra,
one then has the hyperbolicity equations: a system of 6n

equations with unknown varying in an open set of R6n

that, by Mostow’s rigidity, admits one solution at most.
We have solved these equations using Newton’s method
with partial pivoting, after having explicitly written the
derivatives of the length function. Convergence to the so-
lution was always extremely fast, and it was checked to
be stable under modifications of the numerical parame-
ters involved in the implementation of Newton’s method.

4.2 Canonical Decomposition

Epstein and Penner [Epstein and Penner 88] have proved
that cusped hyperbolic manifolds without boundary have
a canonical decomposition, and Kojima [Kojima 90, Ko-
jima 92] has proved the same for hyperbolic 3-manifolds
with nonempty geodesic boundary. This gives the fol-
lowing very powerful tool for recognizing manifolds: M1

and M2 are isometric (or, equivalently, homeomorphic)
if and only if their canonical decompositions are combi-
natorially equivalent. We have always checked equality
and inequality of the manifolds in our census using this
criterion, and we have proved that the cusped element of
H3 has no nontrivial automorphism (a result used at the
end of Section 3) by showing that its canonical decom-
position has no combinatorial automorphism.

Before explaining the lines along which we have found
the canonical decomposition of our manifolds, let us
spend a few more words on the decomposition itself. In
the cusped case its blocks are ideal polyhedra, whereas in
the geodesic boundary case they are hyperbolic truncated
polyhedra (an obvious generalization of a truncated tetra-
hedron). In both cases the decomposition is obtained by
projecting first to H3 and then to the manifold M the
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faces of the convex hull of a certain family P of points in
Minkowsky 4-space. In the cusped case these points lie
on the light-cone, and they are the duals of the horoballs
projecting in M to Margulis neighbourhoods of the cusps.
In the geodesic boundary case the points lie on the hyper-
boloid of equation ‖x‖2 = +1, and they are the duals of
the hyperplanes giving ∂M̃ , where M̃ ⊂ H3 is a universal
cover of M .

4.3 Tilts

Assume M is a hyperbolic 3-manifold, either cusped
without boundary or compact with geodesic boundary,
and let a geometric triangulation T of M be given. One
natural issue is then to decide if T is the canonical de-
composition of M and, if not, to promote T to become
canonical. These matters are faced using the tilt formula
as in [Weeks 93, Ushijima 02a], that we now describe.

If σ is a d-simplex in T , the ends of its lifting to H3

determine (depending on the nature of M) either d + 1
Margulis horoballs or d + 1 components of ∂M̃ , whence
d + 1 points of P. Now let two tetrahedra ∆1 and ∆2

share a 2-face F , and let ∆̃1, ∆̃2, and F̃ be liftings of
∆1,∆2, and F to H3 such that ∆̃1 ∩ ∆̃2 = F̃ . Let F

be the 2-subspace in Minkowsky 4-space that contains
the three points of P determined by F̃ . For i = 1, 2,
let ∆

(F )

i be the half-3-subspace bounded by F and con-
taining the fourth point of P determined by ∆̃i. Then
one can show that T is canonical if and only if, what-
ever F,∆1,∆2, the convex hull of the half-3-subspaces
∆

(F )

1 and ∆
(F )

2 does not contain the origin of Minkowsky
4-space, and the half-3-subspaces themselves lie on dis-
tinct 3-subspaces. Moreover, if the first condition is met
for all triples F,∆1,∆2, the canonical decomposition is
obtained by merging together the tetrahedra along which
the second condition is not met.

The tilt formula defines a real number t(∆, F ) describ-
ing the “slope” of ∆

(F )
. More precisely, one can trans-

late the two conditions of the previous paragraph into
the inequalities t(∆1, F ) + t(∆2, F ) � 0 and t(∆1, F ) +
t(∆2, F ) �= 0, respectively. Since we can compute tilts
explicitly in terms of dihedral angles, this gives a very
efficient criterion to determine whether T is canonical
or a subdivision of the canonical decomposition. Even
more, it suggests where to change T in order to make it
more likely to be canonical, namely along 2-faces where
the total tilt is positive. This is achieved by 2-to-3 moves
along the offending faces, as discussed in [Frigerio and
Petronio 04]. We only note here that the evolution of
a triangulation toward the canonical decomposition is
not quite sure to converge in general, but it always does

in practice, and it always did for us. We also mention
that our computer program is only able to handle tri-
angulations: whenever some mixed negative and “zero”
tilts were found, the canonical decomposition was later
worked out by hand and actually proved not to be a tri-
angulation. Here “zero” is of course just a numerical
approximation of the exact value, but we mention again
that all the “nonzero” values of tilts we have found were
reasonably large, many orders of magnitude larger than
the tolerance we used.

4.4 Cusped Manifolds with Boundary

When one is willing to accept both compact geodesic
boundary and toric cusps (but not annular cusps), the
same strategy for constructing the structure and finding
the canonical decomposition applies, but many subtleties
and variations have to be taken into account. Let us
quickly mention which ones.

4.4.1 Moduli. To parametrize tetrahedra one must
consider that if a vertex of some ∆ lies in a cusp, then
the corresponding truncation triangle actually disappears
into an ideal vertex (a point of ∂H3). At the level of mod-
uli, this translates into the condition that the triangle be
Euclidean, i.e., that its angles sum up to precisely π.

4.4.2 Equations. If an internal edge ends in a cusp,
then its length is infinity; so some of the length equations
must be dismissed when there are cusps. There are no
consistency issues connected with half-infinite edges, but,
when an edge is infinite at both ends, one must make sure
that the gluings around the edge do not induce a sliding
along the edge. This translates into the condition that
the similarity moduli of the Euclidean triangles around
the edge have product 1. This ensures existence of the
hyperbolic structure, but one still has to impose com-
pleteness of cusps. Just as in the case where there are
cusps only, this amounts to requiring that the similarity
tori on the boundary be Euclidean, which translates into
the holonomy equations involving the similarity moduli.

4.4.3 Canonical decomposition. When there are
cusps, the set of points P to take the convex hull
of consists of the duals of the planes in ∂M̃ and of some
points on the light-cone dual to the cusps. The precise
discussion on how to choose these extra points is too
complicated to be reproduced here (see [Frigerio and
Petronio 04]), but the implementation of the choice was
actually very easy in the (not many) cusped members of
our census. The computation of tilts and the discussion
on how to find the canonical decomposition are basically
unaffected by the presence of cusps.
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5. APPENDIX: TABLES OF VOLUMES

�

� c(M) = 3, M compact, ∂M = Σ2, K(M) = 3 tetrahedra

vol
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TABLE 3. Number of manifolds per value of volume for the compact elements of H3 with boundary of genus 2 and canonical
decomposition into thee tetrahedra.

�

� c(M) = 4, M compact, ∂M = Σ3, K(M) = 4 tetrahedra, vol(M) < 12.75

vol

#

11 11.25 11.5 11.75 12 12.25 12.5 12.75

25

50

75

100

125
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TABLE 4. Number of manifolds per value of volume for compact elements of H4 with boundary Σ3 and canonical decomposition
into four tetrahedra—first part.

�

� c(M) = 4, M compact, ∂M = Σ3,

K(M) = 4 tetrahedra, vol(M) > 12.75

vol

#

12.75 12.775 12.8 12.825 12.85 12.875 12.9

10
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TABLE 5. Number of manifolds per value of volume for compact elements of H4 with boundary Σ3 and canonical decomposition
into four tetrahedra—second part. Note the changes of scale.
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�

� c(M) = 4, M compact, ∂M = Σ2, K(M) = 4 tetrahedra, vol(M) < 9.9
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TABLE 6. Number of manifolds per value of volume for compact elements of H4 with boundary Σ2 and canonical decomposition
into four tetrahedra—first part.
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� c(M) = 4, M compact, ∂M = Σ2, K(M) = 4 tetrahedra, vol(M) > 9.9
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TABLE 7. Number of manifolds per value of volume for compact elements of H4 with boundary Σ2 and canonical decomposition
into four tetrahedra—second part. Note the change of scale on volumes.
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� c(M) = 4, M compact, ∂M = Σ2, K(M) = 5 tetrahedra
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TABLE 8. Number of manifolds per value of volume for compact elements of H4 with boundary Σ2 and canonical decomposition
into five tetrahedra.
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�

� c(M) = 4, M one − cusped, ∂M = Σ2, K(M) = 4 tetrahedra

vol

#

8.5 8.75 9 9.25 9.5 9.75

1
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TABLE 9. Number of manifolds per value of volume for one-cusped elements of H4 with boundary Σ2 and canonical decomposition
into four tetrahedra.
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