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A method to generate periodic geodesics in arbitrary level sur-
faces is presented. The underlying algorithm resolves several
technical complications posed by the constraints to stay in the
surface and retain periodicity. The method exploits the “inverse”
of the parallel transport equation and its “derivative.” This ap-
proach avoids most of the complications due to the intricate
form of the geodesic curvature. The process flows any periodic
curve in the surface along the negative gradient trajectory of the
total squared geodesic curvature. The mathematical framework
is that of an infinite-dimensional Riemannian manifold repre-
senting periodic curves of arbitrary length. The method is illus-
trated by an example in a sphere-like surface that is neither an
ellipsoid nor a surface of revolution.

1. INTRODUCTION

1.1 Geodesics

The discovery of non-Euclidean geometries forced a reex-
amination of fundamental concepts such as straight lines.
Although the length-minimizing property of a straight
segment is important, for the purposes of this article a
definition rooted in mechanics is more useful. Recall that
a regular level-surface M in R

3 has a well-defined nor-
mal direction at each point. A parameterized curve in
the surface is considered “straight” whenever its acceler-
ation is parallel to the normal at each point. In math-
ematics these curves are known as geodesics. A simple
non-Euclidean example is given by the great circles in
the unit sphere. Note that periodic geodesics, such as
the great circles, have finite length L > 0.

1.2 Existence

The question regarding the existence of periodic
geodesics has been the subject of much research. Pos-
sibly the earliest example is Jacobi’s [Jacobi 39] descrip-
tion of geodesics in the ellipsoid. These efforts have
recently culminated with the works of Franks [Franks
92], Bangert [Bangert 93], and Hingston [Hingston 93].
Combined, they establish that there are infinitely many
geometrically distinct periodic geodesics on any surface
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that topologically is a sphere. Moreover, if n(L) de-
notes the number of periodic geodesics of length no
more than L on such a given surface, then n(L) satis-
fies lim inf n(L)/ log(L) > 0 as L tends to infinity. It has
proved to be a significant numerical challenge to produce
even one example of a sphere-like surface that is neither
a surface of revolution nor an ellipsoid. The purpose of
the article is to present what the author believes are the
first such “generic” examples and describe how they are
generated. The main difficulties are posed by the peri-
odic boundary conditions and the point-wise constraint
to “stay in M .”

1.3 Convergence

The underlying method, which consists of an algorithm
and a tested implementation, deals with arbitrary M ,
sphere-like or not. Each example generated by this
method is the limit of a negative gradient trajectory of
the “elastic energy.” Each periodic geodesic is a global
minimum, but as M = R

2 illustrates, there need not be
any critical points and hence each trajectory diverges in
this case. With this in mind, it is perhaps surprising
that if the demand on periodicity is removed, then each
trajectory converges [Linnér 03b] in any M . For fixed
ν > 0, Langer and Singer [Langer and Singer 87] estab-
lished convergence when the term νL is added to the
elastic energy. It is a significant open problem to deter-
mine if when ν = 0 there exists a compact M with some
divergent trajectory inside the space of periodic curves.

1.4 Curve-Shortening

The idea to systematically deform a given periodic curve
in its free homotopy class as a way to produce a pe-
riodic geodesic goes back at least as far as Hadamard
[Hadamard 98]. In manifolds with nontrivial funda-
mental group, it is natural to attempt to shrink the
curve and minimize the length in its nontrivial homo-
topy class. The modern counterpart is the, much an-
alyzed, curve-shortening flow. A noteworthy numerical
simulation of this flow is based on the so-called level set
method (Osher and Sethian). For M = R

2 the curve-
shortening flow is illustrated by an interactive applet at
http://math.berkeley.edu/∼sethian/. When the curve-
shortening flow is extended to curves in sphere-like sur-
faces most initial curves are expected to shrink to a
point. To combat this, Gage [Gage 90] introduced the
area-preserving curve-shortening flow. As far as I know,
there is no numerical simulation of this flow available at
this time. Also observe that the choice of initial curve
is nontrivial in this case. The enclosed area must be

equal to its counterpart for the limiting periodic geodesic.
Curves with self-intersections are excluded in the curve-
shortening process, and this is in stark contrast to the
method presented here. Long periodic geodesics are of
course expected to have many self-intersections.

1.5 Curve-Straightening

A completely different approach creates an infinite set-
ting for Morse theory, and in this case the appropriate
quantity is the integral of the square of the speed rather
than the length by itself; see [Klingenberg 78]. The “en-
ergy,” considered by Klingenberg, still shrinks most ini-
tial curves to points in sphere-like surfaces. This be-
havior suggests replacing the speed with the curvature.
The algebraic form of this “elastic” energy is of course
much more complicated, especially on bent surfaces when
the curvature is really the geodesic curvature. The flow
along negative gradient trajectories of the elastic energy
is known as curve-straightening. The rest of this arti-
cle will show how to overcome several technical difficul-
ties and present an implementation of curve straightening
that produces periodic geodesics in sphere-like surfaces.

1.6 Parallel Transport

In the Euclidean plane it is often helpful to move a vec-
tor from one point to another without rotating the vec-
tor. This kind of move can be constrained so that the
base of the vector is always on a given curve. The angle
between the vector and the tangent of the curve is typi-
cally not constant and its derivative is a measure of the
curvature of the given curve. This operation of “parallel
transport along a curve” generalizes to tangent vectors
of M and curves in M . Our intuition about this process
is very limited as recognized already when M is the unit
sphere. Specifically, the demand is that the derivative of
the transported vector is parallel to the normal at each
point, and the corresponding equation is referred to as
the parallel transport equation. It follows that the tan-
gent vector to a geodesic is indeed parallel transported
along the curve. For general curves there is again an an-
gle, the indicatrix, between the transported vector and
the tangent to the curve. The derivative of the indicatrix
is a measure of the curvature of the curve. The geodesic
curvature is the derivative of the indicatrix divided by
the length of the curve.

1.7 Curves via Their Indicatrix

Each curve in M is uniquely represented by its indicatrix
as soon as the length and the initial point and direction
are provided. A curve in this article is therefore given as
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triple (θ, L, pi), with θ in the Sobolev space W 2
1 [0, 1], the

length L a positive real number, and pi an element of the
unit tangent bundle SM . The fact that the elastic energy
involves the square of the geodesic curvature dictates the
choice of the Sobolev space. Observe that the curves are
parameterized proportional to arc-length, and the length
L is also the speed of the curve. With this indicatrix
representation it is much more complicated to determine
if a curve is periodic.

1.8 Inverted Parallel Transport

The core of the method in the present article is based on
the inverse to the parallel transport equation. Roughly
speaking, this inverse uses the geodesic curvature to-
gether with an initial point and direction and “recovers”
the curve. The idea is to start with a periodic curve and
reduce the integral of its total squared geodesic curva-
ture by following the negative gradient without leaving
the space of periodic curves. Since the inverse equation
generates the final endpoint of the curve, it has the po-
tential to facilitate the projection onto the space of pe-
riodic curves. The goal is to track the effect of a varia-
tion in the initial point as it manifests itself at the final
point. An important, albeit disappointing, numerical in-
sight is that the inverse equation is not capable of pro-
ducing sufficiently accurate finite difference approxima-
tions of the variations at the final point to achieve this
goal. To address this deficiency, it is necessary to bring
in the “derivative” of the inverse to the parallel transport
equation.

1.9 Derivative of the Inverse Equation and Gradients

The solutions of the inverse of the parallel transport
equation depend smoothly on the initial conditions. It
follows that the final point and its tangent have deriva-
tives that depend on variations in the initial data. The
“derivative” of the inverse equation is a second differen-
tial equation whose solutions produce, with desired nu-
merical accuracy, the requested derivatives at the final
point. Since the tangent space to the space of periodic
curves is infinite-dimensional, it is nontrivial to convert
these derivatives to a gradient. The approach used here
is to engage a Hilbert basis in the space of indicatrices.
To be precise, the space of all curves in M is param-
eterized by the tangent angle together with the length
and an element of the unit tangent bundle. The latter
provide the initial point and direction of the curve. The
curves are parameterized so that the speed is equal to the
length. The tangent angle is ultimately approximated by
a finite degree polynomial by truncating the Hilbert ba-

sis expansion. There is of course freedom in the choice
of basis, but the Gram-Schmidt sequence generated from
x, x2, . . . is adequate. Observe that the indicatrix of a
periodic curve is not expected to be periodic.

1.10 Computational Experience

The software implementation of the outlined approach
calls for a hybrid of both symbolic as well as numeric
calculations. The ultimate goal is to draw the periodic
geodesic, and therefore strong graphics support is an ad-
vantage. Mathematica is one system that offers these
capabilities. The purpose of the present implementa-
tion is to demonstrate that the proposed method indeed
is capable of producing examples of periodic geodesics.
Many different numerical algorithms are asked to work
in unison. The Hilbert basis expansions are of course
truncated, and this cut-off, together with other parame-
ters, must be carefully selected. It is premature to claim
that the settings adapted so far are optimal. They are,
however, adequate and, one might add, surprisingly de-
manding. Unfortunately, the computational speed in-
side Mathematica is far from satisfying and a future
project is a complete conversion of the implementation to
a fully compiled counterpart. In Mathematica’s defense,
the substantial amount of experimentation and tweaking
leading up to the present state of the code would have
been far more cumbersome in a compiled environment.

1.11 Organization

The next section introduces the necessary notation to
make the previous outline mathematically precise. Spe-
cial attention is given to details that are easy to overlook
but in fact are critical. The final section presents one
specific example of a periodic geodesic on a sphere-like
surface that is neither an ellipsoid nor a surface of revo-
lution. The initial ideas for the method specialized and
finalized here are found in Linnér [Linnér 91].

2. SPECIFICS

2.1 Notation

As a starting point let f : R
3 → R be a given

smooth function. The surface is given by M ={
p ∈ R

3 |f(p) = 0
}
, where it is assumed that p ∈ M im-

plies ∇f(p) �= 0. The unit normal to the surface is given
by n(p) = ∇f(p)/ |∇f(p)|. The initial curve is some
γ : [0, 1] → M , where |γ′(s)| = L > 0 for all s ∈ [0, 1]
and L is the length of γ. The implementation facilitates
this by automatically changing the parameter of any ini-
tial γ(t), such that γ′(t) �= 0, to this required form. Let
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γ0 = γ(0) and i0 = γ′(0)/L. The main example of this
article is given by

f(x, y, z) = 2x2 + 3y2 + 5z2 + x3z + yz3 − 1. (2–1)

The coordinate plane z = 0 intersects this surface
along the ellipse 2x2 + 3y2 = 1. The initial curve
γ(t) = (cos(2πt)/

√
2, sin(2πt)/

√
3, 0) does not have con-

stant speed, and the implementation calculates the new
parameter s. The initial length L is expressible in terms
of the complete elliptic integral E (Mathematica yields
4E(−1/2)/

√
3). More generally, one can use a coordi-

nate chart and “lift” a periodic curve from the plane to
M , and then let the implementation reparameterize the
lifted curve.

2.2 Geodesics

There are geodesics emanating in each direction from the
initial point (1/

√
2, 0, 0). The geodesic in the initial di-

rection (0, 2π/
√

3, 0) is different from γ. As the “geodesic
ray” corresponding to these initial conditions is extended,
it stays in a “strip” in the surface M = f−1(0). The unit
speed geodesic “ray” extended 100 units generates the
strip seen in Figure 1.

FIGURE 1. First geodesic ray in 2x2 + 3y2 + 5z2 + x3z +
yz3 = 1.

As an example of a very different behavior, consider
the direction given by rotating the previous direction
“down” π/4 radians in the tangent plane. This time

FIGURE 2. Second geodesic ray in 2x2+3y2+5z2 +x3z+
yz3 = 1.

the unit speed geodesic extended 100 units is depicted
in Figure 2.

It is doubtful that either of the two initial tangent di-
rections produce a periodic geodesic; in fact, there is no
guarantee any direction has this capability at this par-
ticular initial point.

2.3 Parallel Transport and Its Inverse

To proceed, parallel transport i0 and get i defined
on [0, 1] such that i(s) ∈ Tγ(s)M with |i(s)| = 1
and i(0) = i0. Here, Tγ(s)M is the tangent space
to M at the point γ(s). The parallel transport de-
mand is expressed by i′(s) = (i′(s) · n(γ(s)))n(γ(s)).
Let θ : [0, 1] → R be the smooth angle between i

and γ′ with θ(0) = 0. The parallel transport equa-
tion completely determines θ. Since i(s) · n(γ(s)) =
0, it follows that i′(s) · n(γ(s)) = −i(s)[n(γ(s))]′. It
is clear that |∇f(γ(s))|2 = ∇f(γ(s)) · ∇f(γ(s)) im-
plies that |∇f(γ(s))| |∇f(γ(s))|′ = ∇f(γ(s)) · ∇f(γ(s))′;
hence |∇f(γ(s))|′ = n(γ(s)) · Hf(γ(s))γ′(s) in terms
of the Hessian Hf of second derivatives. Moreover,
|∇f(γ(s))|n(γ(s)) = ∇f(γ(s)) implies that

|∇f(γ(s))|′ n(γ(s)) + |∇f(γ(s))| [n(γ(s))]′ =

Hf(γ(s))γ′(s), (2–2)

and finally

i(s) · [n(γ(s))]′ =

i(s) · Hf(γ(s))γ′(s)/ |∇f(γ(s))| . (2–3)

The inverse parallel transport equation is the six-
dimensional initial value problem

γ′(s) = L(cos θ(s)i(s) + sin θ(s)n(γ(s)) × i(s))
i′(s) = −(i(s) · Hf(γ(s))γ′(s))n(γ(s))/ |∇f(γ(s))|

(2–4)
with γ(0) = γ0 and i(0) = i0. Observe how θ, together
with the length L and the initial data, determines both
the parallel transport as well as the curve.

2.4 Unit Tangent Bundle

The proper setting for the parallel transport equation is
the unit tangent bundle given by

SM =
{
pi = (p, i) ∈ R

3 × R
3 |f(p) = 0,

i ∈ TpM, |i| = 1} . (2–5)

This space is in fact a closed three-dimensional subman-
ifold of R

3 × R
3 expressed as SM = g−1(0, 0, 0) with g :
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R
3×R

3 → R
3 given by g(p, v) = (f(p),∇f(p)·v, v ·v−1).

The derivative of g is represented by the matrix

dg(p, v) =

⎡
⎣ ∇f(p) 0

Hf(p)v ∇f(p)
0 2v

⎤
⎦ . (2–6)

The kernels of these maps restricted to SM provide the
tangent bundle TSM , which has the following explicit
basis:

(i, (Hf(p)i · i/ |∇f(p)|)n(p)) ,

(2–7)(j,−(Hf(p)i · j/ |∇f(p)|)n(p)) , (0, j) ,

where j = n(p) × i. In what follows, let {Tq}3
q=1 be a

normalized orthogonal basis for TSM .

2.5 Hilbert Space and Functional

In the present set-up the geodesic curvature is given
by κ = θ′/L. Geodesics are exactly the curves such
that θ ≡ 0. The goal is to straighten the initial curve
as efficiently as possible without destroying periodicity.
To avoid generating curves that shrink to a point with
L → 0+, use the total squared curvature functional∫

κ2, also known as the elastic energy. In the Euclidean
plane, the total squared curvature of a circle of radius
r is given by 2π/r, and the functional is unbounded as
r → 0+. This behavior persists in general surfaces M .
In terms of the indicatrix, the proper setting is given
by the Sobolev space of absolutely continuous θ with θ′

square-integrable. Denote this space by H0 when it is
assumed that θ(0) = 0. Let R

+ be all positive real num-
bers. The precise definition of the functional is given by
J : H0 × R

+ × SM → R such that

J(θ, L, pi) =
1

2L

1∫

0

(θ′(s))2ds. (2–8)

The half is added to simplify the derivative and the gra-
dient formulas.

2.6 Periodic Curves

The space of periodic curves is represented by the closed
infinite-dimensional submanifold

Ω =
{
(θ, L, pi) ∈ H0 × R

+ × SM |Λ(θ, L, pi) = pi
}

,

(2–9)
where Λ : H0 × R

+ × SM → SM is defined by

Λ(θ, L, pi) = (γ(1), γ′(1)/L) =

(γ(1), cos θ(1)i(1) + sin θ(1)n(γ(1)) × i(1)), (2–10)

where (γ(0), γ′(0)/L) = (γ(0), i(0)) = (γ0, i0) = pi. The
technical details verifying the space is a manifold are
found in [Langer and Singer 87] in a slightly different
and also more general setting. The gradient of J is most
likely not tangent to Ω, so it is necessary to take its tan-
gential part. To this end one first needs the derivative

DΛ(θ, L, pi) : H0 × R × TpiSM → T(γ(1),γ′(1)/L)SM.

(2–11)

2.7 Derivative of Inverse Parallel Transport

The derivative of the inverse parallel transport equation
yields dγ(1) and di(1). As indicated in the introduction,
the use of the inverse parallel transport equation to nu-
merically estimate these derivatives is problematic if not
futile. The main issue is the bound on the accuracy im-
posed by each choice of discrete derivative formula. This
fixed bound is not necessarily within the numerical de-
mands imposed by the choice of M and the initial curve.
On the other hand, the derivative of the inverse parallel
transport equation brings with it this desired numerical
flexibility. A hefty price is paid in computational perfor-
mance as one solves the six-dimensional

[dγ(s)]′ = (vL/L)γ′(s) + vθ(s)n(p) × γ′(s)
+L cos(θ(s))di(s) + L sin(θ(s))/ |∇f(p)|

× [−n(p)Hf(p)dγ(s)n(p) × i
+Hf(p)dγ(s) × i + ∇f(p) × di(s)]

[di(s)]′ = 2/ |∇f(p)| (Hf(p)dγ(s) · n(p))
×(i · Hf(p)γ′(s))n(p)

−1/ |∇f(p)| (di(s) · Hf(p)γ′(s))n(p)
−1/ |∇f(p)| [i · (dγ(s) · DHf(p) · γ′(s)

+Hf(p)[dγ(s)]′]n(p)
−1/ |∇f(p)|2 (i · Hf(p)γ′(s))Hf(p)dγ(s).

(2–12)
The derivation of this system is in the same spirit as
the one yielding the inverse to the transport equation.
The tangent vector in H0 × R × TpiSM is written as
(vθ, vL, vpi), and the six-dimensional initial conditions
are given by (dγ, di)(0) =

∑3
q=1 vpi(q)Tq, where vpi(q)

is the qth component of the three-dimensional vpi. To
save space here γ(s) is written as p. There is also a
term involving the three-tensor appearing as the deriva-
tive DHf of the Hessian Hf . Incidentally, Mathematica
accepts tensors verbatim and also, thankfully, terms like
[dγ(s)]′ on the right-hand side of the differential equation.
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Putting things together,

DΛ(θ, L, pi)(vθ, vL, vpi) =
(dγ(1),− sin θ(1)vθ(1)i(1) + cos θ(1)di(1)
+ cos θ(1)vθ(1)n(γ(1)) × i(1))
+sinθ(1)((Hf(γ(1))dγ(1) × i(1)
−(n(γ(1)) · Hf(γ(1))dγ(1))n(γ(1))
× i(1))/ |∇f(γ(1))|

+n(γ(1)) × di(1)).

(2–13)

2.8 Projection

Using the Riemannian structure

〈(vθ, vL, vpi), (wθ, wL, wpi)〉 =
1∫

0

v′
θ(s)w

′
θ(s)ds + vLwL + vpi · wpi, (2–14)

define the gradient ∇J(θ, L, pi) ∈ H0 × R × TpiSM

by requiring the Gateaux derivative DJ to satisfy
〈∇J(θ, L, pi), v〉 = DJ(θ, L, pi)v. Next, seek λ ∈ TpiSM

so that ∇J(θ, L, pi) − DΛT (pi)λ ∈ T(θ,L,pi)Ω. To de-
termine the transpose of DΛ it is necessary to have a
normalized orthogonal Hilbert basis {Pl}∞l=1 for H0. It
turns out that the Gram-Schmidt basis generated from
1, x, x2, . . . is the same as the antiderivatives of the Leg-
endre polynomials, which are available in Mathematica.
For m = 1, 2, 3, write

DΛT (pi)Tm = (
∞∑

l=1

al
mPl, bm,

3∑
q=1

cq
mTq), (2–15)

and observe that

ak
m =

〈
DΛT (pi)Tm, (Pk, 0, 0)

〉
(θ,L,pi)

=

〈Tm,DΛ(θ, L, pi)(Pk, 0, 0)〉pi , (2–16)

bm =
〈
DΛT (pi)Tm, (0, 1, 0)

〉
(θ,L,pi)

=

〈Tm,DΛ(θ, L, pi)(0, 1, 0)〉pi , (2–17)

cq
m =

〈
DΛT (pi)Tm, (0, 0, Tq)

〉
(θ,L,pi)

=

〈Tm,DΛ(θ, L, pi)(0, 0, Tq)〉pi . (2–18)

2.9 Preserved Periodicity

The requirement that the projected gradient is tangent
to the space of periodic curves is expressed by

∇J(θ, L, pi) − DΛT (θ, L, pi)λ ∈ T(θ,L,pi)Ω. (2–19)

Observe that if (θ, L, pi) ∈ Ω, then Λ(θ, L, pi) = pi. This
leads to

DΛ(θ, L, pi)[∇J(θ, L, pi) − DΛT (pi)λ] =

π3(∇J(θ, L, pi) − DΛT (pi)λ), (2–20)

where π3 : H0 × R × TSM → TSM is given by
π3(vθ, vL, vpi) = vpi. Since J does not depend on pi,
the third component of ∇J vanishes, and the tangency
condition simplifies to

(DΛ(θ, L, pi)DΛT (pi) − π3DΛT (pi))λ =

DΛ(θ, L, pi)∇J(θ, L, pi). (2–21)

In terms of the Hilbert basis components, the left-hand
side involves the crucial matrix Π : TpiSM → TpiSM ,
given by the entries

Πj
i =

∞∑
l=1

al
ja

l
i + bjbi +

3∑
q=1

cq
jc

q
i − ci

j (2–22)

in row i and column j when the matrix is expressed with
respect to {Tq}3

q=1. The parameter λ is the solution of
the three-dimensional linear system

Πλ = DΛ(θ, L, pi)∇J(θ, L, pi). (2–23)

Apart from motivating the choice of Hilbert space, the
only place where J enters is at this final step. The gradi-
ent depends on the choice of Riemannian structure, and
with the current choice

∇J(θ, L, pi) = (
θ(s)
L

,−1
2

1∫

0

(θ′(s)/L)2ds, 0). (2–24)

2.10 Approximate Expansions and Steepest Descent

All building blocks of the method are now in place. It
is of course necessary to truncate the infinite series. Nu-
merical experimentation indicates that replacing infinity
with an integer in the range 5–15 is workable. At the
low end of the range, there is the risk of insufficient ac-
curacy. The high end of the range slows each step to
taking maybe more than an hour (on a 1.2-GHz PC run-
ning Mathematica 5.0). Each step produces a tangent
direction v ∈ TpΩ such that the total squared curvature
is reduced more rapidly in this direction than any other.
The idea of a line search to find the optimal step size
is less useful here since lines leave the manifold of peri-
odic curves. More succinctly, since the manifold Ω is not
flat, it is typical for the distance from p + hv to Ω to
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increase substantially as h grows. The key is therefore
to select h so that p + hv is “sufficiently close” to Ω and
yet maintain a reduction of the energy at an acceptable
rate. The implementation acts particularly carefully here
by following a geodesic in SM emanating from pi ∈ SM

in the direction suggested by the third component of the
projected negative gradient. Compare this with the tra-
ditional Euler step, which takes place in TΩ, which in
the third factor is TSM rather than SM . Experimenta-
tion is necessary to choose a suitable initial step size h

and the subsequent interactive adjustments. As usual, it
is useful to increase the step size to accelerate the speed
of convergence as the limit is approached. There is con-
siderable room for improvement in this particular area.
The author developed an acceleration scheme based on
the Adams-Bashford idea to help track divergent trajec-
tories as they approach critical points at infinity. This
scheme potentially adapts to the present manifold setting
but is left for future versions; see the examples in [Linnér
03a].

3. EXAMPLES

The implementation reproduces accurately the explicit
flow on curves in the Euclidean plane, and it finds peri-
odic geodesics in a Torus of revolution. Returning to the
case f(x, y, z) = 2x2 +3y2 +5z2 +x3z +yz3−1, compare
the initial ellipse in the xy-plane and the limit periodic
geodesic in Figure 3.

FIGURE 3. Initial ellipse and final perioidc geodesic.

Here the darker curve is the periodic geodesic. The
plots stop at s = 0.998 so that the reader can see the
initial point and direction and compare them to the final
point and direction. The z coordinate as a function of s

is initially zero, and here its limit is given in Figure 4.
One way to look at the method is that it pro-

duces an initial point and direction with the prop-
erty that the corresponding geodesic ray is in fact
periodic. In the example the approximate initial
point (0.70925, -0.0010537, -0.0433068) and direction

FIGURE 4. The z coordinate of the final periodic geodesic.

(0.00230281, 0.999997, -0.000309739) emerge. The cor-
responding unit speed geodesic ray extended 100 units is
shown in Figure 5.

FIGURE 5. Geodesic ray of length 100.

This curve is “thicker” than the “true” limit. This is to
be expected since the calculation was aborted somewhat
prematurely; therefore, there is a slight inaccuracy in the
calculated initial data. The method has been tested to
the point where the total squared geodesic curvature of
the “limit” is approximately machine precision. In such
cases, no “thickening” is visible. Standard ellipsoids have
also been considered. When f(x, y, z) = x2/a2 + y2/b2 +
z2/c2 − 1, and the initial curve has constant z �= 0, then
there are ellipsoids where the flow tends to the geodesic
with z = 0 through curves with constant z. A current
project involves an attempt to resolve two contradicting
claims found in the literature regarding the number of
simple periodic geodesics on such ellipsoids.

FIGURE 6. Periodic geodesic in 2x2 + 3y2 + 5z2 + x3z +
yz3 = 1.
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In conclusion, four distinct views of the periodic
geodesic are presented in Figures 6–9. The initial curve,
which is an ellipse, has approximate length 4.04554.
The limit periodic geodesic has approximate length
4.0534. The Mathematica notebook is available at
www.math.niu.edu\ ∼alinner.

FIGURE 7. Periodic geodesic in 2x2 + 3y2 + 5z2 + x3z +
yz3 = 1.

FIGURE 8. Periodic geodesic in 2x2 + 3y2 + 5z2 + x3z +
yz3 = 1.

FIGURE 9. Periodic geodesic in 2x2 + 3y2 + 5z2 + x3z +
yz3 = 1.
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